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Expanding the Parallelism with SIMT
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▪ Rising Demand for Parallelism

▪ Traditional parallel programs use MIMD, primarily 
targeting CPUs

▪ Shifting Paradigms

▪ The Slowing of Moore’s Law

▪ CPUs face energy-efficiency limitations

▪ Emergence of Accelerators:

▪ GPUs with SIMT are leading this trend
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Pathway of Program Evolution 
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Challenges
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Challenges
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▪ Porting effort is needed to exploit the SIMT accelerator 

▪ Porting is risky

▪ Time-consuming

▪ Speedups are not guaranteed

▪ Hardware designers struggle to analyze the potential 
efficiency of SIMT hardware due to a lack of diverse 
software
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Challenges
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▪ Porting effort is needed to exploit the SIMT accelerator 

▪ Porting is risky

▪ Time-consuming

▪ Speedups are not guaranteed

▪ Hardware designers struggle to analyze the potential 
efficiency of SIMT hardware due to a lack of diverse 
software

Goal: If we already have a parallel CPU Version, 

Can we analyze the performance of a MIMD 

application on SIMT hardware without porting? 
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Single Instruction Multiple Thread (SIMT)
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▪ Execution Model

▪ Based on SPMD running on SIMD hardware

▪ Threads grouped into warps/wavefronts

▪ CUDA, ROCm, and OpenCL are popular frameworks

▪ Efficiency Gains

▪ Pipeline: Fetch, decode, and schedule once per warp

▪ Memory: Coalesced accesses reduce traffic

Wavefront/warp

32 or 64 threads
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Control-Flow and Memory Divergence in 
SIMT
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Previous Work
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▪ Prior Approaches: Depend on machine learning 
models to predict execution time *

▪ Limitations:

▪ Single Metric Focus

▪ Small Codebase 

▪ No Architecture Exploration

* 1-Predicting Cross-Architecture Performance of Parallel Programs (IPDPS 2024) 

   2- Cross-architecture performance prediction (XAPP) (MICRO 2015)
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Previous Work
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Previous Work
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ThreadFuser: is an analysis framework that 

enables performance analysis of any MIMD CPU 

programs on SIMT hardware

ThreadFuser

Cheap Control-

Flow Efficiency 

and  Memory 

Divergence

Integrates with 

simulators

Analyze dynamic traces from 

unmodified CPU binaries.



ThreadFuser: A SIMT Analysis Framework for MIMD Programs

SYSTEM OVERVIEW
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▪ Traces Outputs: 

▪ Per-thread Instructions trace 

▪ Memory access records

▪ Analyzer Components:

▪ Per-function Control Flow Graph (CFG) 

▪ Perform IPDOM analysis 

▪ SIMT Stack Operations

▪ Generates SIMT-based traces

ThreadFuser Tracer and Analyzer
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Experimental Setup
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▪ 36 workloads across task-parallel and data-parallel architectures

▪ Intel’s Pin tool to build tracer 

▪ Correlated SIMT efficiency and memory divergence against Nvidia H100

▪ 11 applications with identical CPU and GPU implementations

▪ Accel-Sim for performance simulation (x86 support added)

▪ In task parallel microservices application, we batch requests to the same microservice and run 
them on SIMT

Benchmark suite Parallelism 

Rodinia data-parallel

Parapoly data-parallel

μsuite task-parallel

DeathStarBench task-parallel

ParSec 3.0 Task and data parallel 
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Use Case: Quick Porting Estimation
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▪ Provides SIMT efficiency projections, helping to assess the potential effort required for porting
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Use Case: Detailed Performance Analysis
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▪ Full cycle level analysis using generated SIMT-based traces and trace-driven 
simulation
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Conclusion 
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Summary:

•A Framework for comprehensive performance analysis of any MIMD CPU 

binary on SIMT hardware

Impact:

•Enables performance evaluation on SIMT hardware without code porting

•Supports SIMT hardware design by offering efficiency insights across 
diverse applications

Questions
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Backup
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Use Case: Source Code Analysis

21

▪ ThreadFuser diagnoses low SIMT efficiency in ported MIMD implementations when source 
code is available.

▪ Example: HDSearch-Midtier.
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1 for (; table != table_end; ++table) {

2 for (; xor_mask != xor_mask_end; ++xor_mask) {

3  sub_key = key ˆ (*xor_mask);

4  ....

5  for (int j = 0; j < num_point; j++) {

6   point_id_vec->push_back(point);

7  }

8 }

9 }
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Use Case: Source Code Analysis
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Correlation
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Synchronization study
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Synchronization study

26



ThreadFuser: A SIMT Analysis Framework for MIMD Programs

ThreadFuser: A SIMT Analysis Framework 
for MIMD Programs
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▪ ThreadFuser: is an analysis framework that predicts the 
performance of MIMD CPU programs on SIMT hardware.

▪ Analyze dynamic traces from unmodified CPU binaries.

▪ Offers insights into control flow efficiency, memory divergence, 
and synchronization on SIMT hardware.

▪ ThreadFuser integrates for cycle-level analysis with simulators 
like Accel-Sim.
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Workloads
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Memory Transactions
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