
ThreadFuser: A SIMT
Analysis Framework for
MIMD Programs

Ahmad Alawneh, Ni Kang, Mahmoud Khairy* , Timothy G. Rogers

MICRO 2024

*Currently at AMD

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Expanding the Parallelism with SIMT

2

▪ Rising Demand for Parallelism

▪ Traditional parallel programs use MIMD, primarily
targeting CPUs

▪ Shifting Paradigms

▪ The Slowing of Moore’s Law

▪ CPUs face energy-efficiency limitations

▪ Emergence of Accelerators:

▪ GPUs with SIMT are leading this trend

45K
1.5M

5M

2010 2014 2018 2022 2026

100X GPU DEVELOPERS

2024 NVIDIA Corporation Annual Review
SIMT: Single Instruction Multiple Threads

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Pathway of Program Evolution

3

CPU

Instr 1

Instr 2

Instr 1 Instr 2

Instr 3

Instr 3 Instr 1

Instr 2

Instr 3

Single

Thread

MIMD/

SIMD
SIMT

Wmma Instr 1

Wmma Instr 2

Wmma Instr 3

Specialized

Processing Cores

GEMM

What is Next?

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Challenges

4

Instr 1

Instr 2

Instr 3

SIMT

Instr 1 Instr 2 Instr 3

MIMD/

SIMD

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Challenges

5

Instr 1 Instr 2 Instr 3

MIMD/

SIMD

Instr 1

Instr 2

Instr 3

SIMT

▪ Porting effort is needed to exploit the SIMT accelerator

▪ Porting is risky

▪ Time-consuming

▪ Speedups are not guaranteed

▪ Hardware designers struggle to analyze the potential
efficiency of SIMT hardware due to a lack of diverse
software

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Challenges

6

Instr 1 Instr 2 Instr 3

MIMD/

SIMD

Instr 1

Instr 2

Instr 3

SIMT

▪ Porting effort is needed to exploit the SIMT accelerator

▪ Porting is risky

▪ Time-consuming

▪ Speedups are not guaranteed

▪ Hardware designers struggle to analyze the potential
efficiency of SIMT hardware due to a lack of diverse
software

Goal: If we already have a parallel CPU Version,

Can we analyze the performance of a MIMD

application on SIMT hardware without porting?

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Single Instruction Multiple Thread (SIMT)

7

▪ Execution Model

▪ Based on SPMD running on SIMD hardware

▪ Threads grouped into warps/wavefronts

▪ CUDA, ROCm, and OpenCL are popular frameworks

▪ Efficiency Gains

▪ Pipeline: Fetch, decode, and schedule once per warp

▪ Memory: Coalesced accesses reduce traffic

Wavefront/warp

32 or 64 threads

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Control-Flow and Memory Divergence in
SIMT

8

A

B C

D

A

B

C

D

Rec point Next BBL
Active

Mask

- D 1111

D C 1100

D B 0011

SIMT Stack

TOS

Control Flow Divergence

IPODM D

Memory Divergence

0 32 64

0 32 64

1 Memory Transaction

3 Memory Transactions

…

…

SIMT Efficiency

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Previous Work

9

Instr 1 Instr 2 Instr 3 Instr 1

Instr 2

Instr 3

MIMD/

SIMD
SIMT

New CPU

program

ML model Performance

predictions

▪ Prior Approaches: Depend on machine learning
models to predict execution time *

▪ Limitations:

▪ Single Metric Focus

▪ Small Codebase

▪ No Architecture Exploration

* 1-Predicting Cross-Architecture Performance of Parallel Programs (IPDPS 2024)

 2- Cross-architecture performance prediction (XAPP) (MICRO 2015)

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Previous Work

10

Instr 1 Instr 2 Instr 3 Instr 1

Instr 2

Instr 3

MIMD/

SIMD
SIMT

Arbitrary

MIMD CPU

?
Low overhead

porting estimate

Detailed analysis

for developer and

architect

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Previous Work

11

Instr 1 Instr 2 Instr 3 Instr 1

Instr 2

Instr 3

MIMD/

SIMD
SIMT

Arbitrary

MIMD CPU

?
Low overhead

porting estimate

Detailed analysis

for developer and

architect

ThreadFuser: is an analysis framework that

enables performance analysis of any MIMD CPU

programs on SIMT hardware

ThreadFuser

Cheap Control-

Flow Efficiency

and Memory

Divergence

Integrates with

simulators

Analyze dynamic traces from

unmodified CPU binaries.

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

SYSTEM OVERVIEW

12

T0 Trace
#S FUN1

48 0xFF18

#R FUN1

T1 Trace
#S FUN1

48 0xFF18

#R FUN1

…
.

TN Trace
#S FUN1

48 0xFF18

#R FUN1

⁞

Construct

DFG

IPDOM

Analysis

SIMT Stack

Operations

Control flow

Efficiency

and Mem

Divergence

report

SIMT-Based

Trace

generator

Detailed

performance

analysis

using

Simulator

Per Thread

Trace

Tracer

ThreadFuser Tracer ThreadFuser

Analyzer

Output: Fast estimation

Output: Cycle-level performance

analysis using trace-driven

simulator

CPU

ThreadFuser: A SIMT Analysis Framework for MIMD Programs 13

▪ Traces Outputs:

▪ Per-thread Instructions trace

▪ Memory access records

▪ Analyzer Components:

▪ Per-function Control Flow Graph (CFG)

▪ Perform IPDOM analysis

▪ SIMT Stack Operations

▪ Generates SIMT-based traces

ThreadFuser Tracer and Analyzer

Rec

point

Next

BBL
inst.

Active

Mask

Fun

Stack

- BBL4 2 11 Fun1

BBL4 BBL3 8 01 Fun1

BBL4 BBL2 4 10 Fun1

SIMT Stack StatusBBL1

BBL2 BBL3

BBL4

CFG

#S FUN1

BBL1

BBL2

BBL4

#R FUN1

#S FUN1

BBL1

BB3

BBL4

#R FUN1

T1 TraceT0 Trace

BBL4

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Experimental Setup

14

▪ 36 workloads across task-parallel and data-parallel architectures

▪ Intel’s Pin tool to build tracer

▪ Correlated SIMT efficiency and memory divergence against Nvidia H100

▪ 11 applications with identical CPU and GPU implementations

▪ Accel-Sim for performance simulation (x86 support added)

▪ In task parallel microservices application, we batch requests to the same microservice and run
them on SIMT

Benchmark suite Parallelism

Rodinia data-parallel

Parapoly data-parallel

μsuite task-parallel

DeathStarBench task-parallel

ParSec 3.0 Task and data parallel

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Use Case: Quick Porting Estimation

15

0

20

40

60

80

100

SI
M

T
EF

FI
C

IE
N

C
Y

 (
P

er
ce

n
t)

X86 MIMD CPU APPS

32 Thread Warp

16 Thread Warp

8 Thread Warp

▪ For Developers:

▪ Provides SIMT efficiency projections, helping to assess the potential effort required for porting

▪ For Architects:

▪ Provides insights for designing future SIMT architectures and accelerators suited to diverse applications

userxtag

textsearch

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Use Case: Detailed Performance Analysis

16

▪ Full cycle level analysis using generated SIMT-based traces and trace-driven
simulation

0

5

10

15

20

SP
EE

D
U

P

APPS

GPU speedup (real HW)
GPU speedup (Simulator)

Correlation Apps

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Conclusion

17

Summary:

•A Framework for comprehensive performance analysis of any MIMD CPU

binary on SIMT hardware

Impact:

•Enables performance evaluation on SIMT hardware without code porting

•Supports SIMT hardware design by offering efficiency insights across
diverse applications

Questions

ThreadFuser A SIMT Analysis Framework for MIMD Programs

Backup

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Use Case: Source Code Analysis

21

▪ ThreadFuser diagnoses low SIMT efficiency in ported MIMD implementations when source
code is available.

▪ Example: HDSearch-Midtier.

getPointID

50.5%

UnpackReq

10.8%

vectorIjSaIjEE

10.5%

PointGetValue

9.3%

ProcessRequest

3.1%

Other functions

15.8%

Instructions Distribution per Function

1 for (; table != table_end; ++table) {

2 for (; xor_mask != xor_mask_end; ++xor_mask) {

3 sub_key = key ˆ (*xor_mask);

4

5 for (int j = 0; j < num_point; j++) {

6 point_id_vec->push_back(point);

7 }

8 }

9 }

0%

20%

40%

60%

80%

100%

Before After

S
IM

T
 E

ff
ic

ie
n

cy

Application SIMT

10ThreadFuser reports 6% efficiency for getPointID function

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Use Case: Source Code Analysis

22

6.08%

0%

20%

40%

60%

80%

100%

getPointID UnpackLoadgenServiceRequest vectorIjSaIjEE PointGetValueAtIndex ProcessRequest

SI
M

T
 E

FF
IC

IE
N

CY

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Correlation

24

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Synchronization study

25

0%

50%

100%
Traced Skipped

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Synchronization study

26

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

ThreadFuser: A SIMT Analysis Framework
for MIMD Programs

28

▪ ThreadFuser: is an analysis framework that predicts the
performance of MIMD CPU programs on SIMT hardware.

▪ Analyze dynamic traces from unmodified CPU binaries.

▪ Offers insights into control flow efficiency, memory divergence,
and synchronization on SIMT hardware.

▪ ThreadFuser integrates for cycle-level analysis with simulators
like Accel-Sim.

New CPU

program

Tracer

Performance

predictions

Analyze

traces

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Workloads

29

ThreadFuser: A SIMT Analysis Framework for MIMD Programs

Memory Transactions

30

0

10

20

30

M
e

m
 T

ra
n

s
a

ct
io

n
 p

e
r

L
o

a
d

/
S

to
re

Apps

heap

stack

	Slide 1: ThreadFuser: A SIMT Analysis Framework for MIMD Programs
	Slide 2: Expanding the Parallelism with SIMT
	Slide 3: Pathway of Program Evolution
	Slide 4: Challenges
	Slide 5: Challenges
	Slide 6: Challenges
	Slide 7: Single Instruction Multiple Thread (SIMT)
	Slide 8: Control-Flow and Memory Divergence in SIMT
	Slide 9: Previous Work
	Slide 10: Previous Work
	Slide 11: Previous Work
	Slide 12: SYSTEM OVERVIEW
	Slide 13: ThreadFuser Tracer and Analyzer
	Slide 14: Experimental Setup
	Slide 15: Use Case: Quick Porting Estimation
	Slide 16: Use Case: Detailed Performance Analysis
	Slide 17: Conclusion
	Slide 18: Backup
	Slide 21: Use Case: Source Code Analysis
	Slide 22: Use Case: Source Code Analysis
	Slide 24: Correlation
	Slide 25: Synchronization study
	Slide 26: Synchronization study
	Slide 28: ThreadFuser: A SIMT Analysis Framework for MIMD Programs
	Slide 29: Workloads
	Slide 30: Memory Transactions

