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Abstract—Modern graphical processing units (GPUs) are equippedwith general-purpose L1 and L2 caches to reduce thememory

bandwidth demand and improve the performance of some irregular general-purposeGPU (GPGPU) applications. However, due to the

massivemultithreading, GPGPU caches suffer from severe resource contention and lowdata-sharing whichmay lead to performance

degradation instead. This paper proposes a low-cost streaming-aware conflict-avoiding thrashing-resistant (SACAT)GPGPU cache

management scheme that efficiently utilizes theGPGPU cache resources and addresses all the problems associatedwith GPGPU caches.

The proposed scheme employs three orthogonal techniques. First, it dynamically detects and bypasses streaming applications at fine

granularity. Second, a dynamic warp throttling via cores sampling (DWT-CS) is proposed to alleviate cache thrashing. DWT-CS runs an

exhaustive search over cores to find the best number of warps that achieves the highest performance. Third, it employs pseudo random

interleaving cache (PRIC), which is an improved cache indexing function based on polynomial modulusmapping, tomitigate associativity

stalls and eliminate conflictmisses. Experimental results demonstrate that the proposed scheme achieves a 1.87� and a 1.5� performance

improvement over the cache-consciouswavefront scheduler (CCWS) and thememory request prioritization buffer (MRPB), respectively.

Index Terms—Cache management, GPGPU

Ç

1 INTRODUCTION

THROUGHPUT-ORIENTED processors, such as general-pur-
pose graphics processing units (GPGPUs), have been

widely adopted for accelerating compute-intensive data-par-
allel applications due to their high computational power and
energy efficiency [1], [2]. However, GPGPU programming is
a difficult task. The programmer has to explicitly manage the
on-chip scratchpad memory to generate coalesced memory
accesses and utilize data locality [2], [3]. Moreover, it has
been shown that thememory throughput has become a limit-
ing factor for the performance of many GPGPU applications
[1]. To address these issues, modern GPUs [4], [5] are
equipped with a general purpose on-chip cache hierarchy in
an attempt to reduce the off-chip memory bandwidth
demand, increase the memory system throughput, improve
the performance of some irregular GPGPU applications, and
enhance the GPUprogrammability.

GPU cache size is very limited compared to the number of
active threads a GPU executes concurrently. The recent
NVIDIA’s Fermi GPU [4] supports 1,536 active threads per
core, and the L1 cache size is configurable to 16 or 48 KB.
Thus, the average L1 cache capacity per thread is only 10 or

32 bytes, which is less than a single cache line size (128 bytes).
This behavior is also found in the NVIDIA’s Kepler GPU [5]
which has 2,048 active threads per core and a read-only L1
data cache of size 48 KB. This indicates that the GPU cache is
not designed to keep the per-thread working set, as in CPUs.
For example, the Intel core i7 CPU [6] contains 2 threads and
a 32 KB L1 per core, i.e., 16 KB per thread. In fact, GPU caches
were designed to make use of some access patterns that
exhibit a small cache footprint per thread, and can fit in the
cache (e.g., spilled registers, small-stride access pattern [3]
and inter-core data locality [5]). Therefore, when GPGPU
applications with a large cache footprint per-thread rely on
caches to make use of data locality, the active threads will
compete for the few available cache lines and the L1 cache
will be susceptible to thrashing. Moreover, the limited number
of set associativity, typically between 4 and 6 [7], makes the
L1 cache more vulnerable to associativity stalls and conflict
misses. Additionally, GPGPU applications which use the
scratchpad memory, to make use of locality, exhibit a stream-
ing behavior on the L1 cache. Cache management schemes
which are unaware of these streaming applications lead to
useless unintended contention at the L1 cache, which in turn
may cause performance degradation.

Different techniques have been proposed to alleviate
cache thrashing including CTA throttling [8], [9], warp
throttling [10], [11], [12], [13], FIFO buffer [14], and thrash-
ing-resistant cache replacement policy [12], [15], [16]. How-
ever, many of these techniques address the cache thrashing
problem only, incur a considerable storage overhead, and
require significant changes to the baseline architecture. On
the other hand, cache bypassing [12], [13], [14] was pro-
posed to mitigate the associativity stalls. However, cache

� M. Khairy and A. Wassal are with the Department of Computer Engineer-
ing, Cairo University, Giza 12613, Egypt.
E-mail: {makhairy, wassal}@eng.cu.edu.eg.

� M. Zahran is with the Department of Computer Science, New York Uni-
versity, New York, NY 10003. E-mail: mzahran@cs.nyu.edu.

Manuscript received 8 Nov. 2015; revised 1 Nov. 2016; accepted 5 Nov. 2016.
Date of publication 15 Nov. 2016; date of current version 17 May 2017.
Recommended for acceptance by M. Ripeanu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2627560

1740 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on September 09,2020 at 21:38:08 UTC from IEEE Xplore.  Restrictions apply. 



bypassing does not utilize the available cache resources effi-
ciently. In many cases, bypassing occurs while cache sets
are underutilized.

This paper proposes a low-cost streaming-aware conflict-
avoiding thrashing-resistant (SACAT)GPGPUcachemanage-
ment scheme that efficiently utilizes the GPGPU cache resour-
ces. The proposed scheme employs three techniques. First, it
dynamically detects and bypasses applications that exhibit a
streaming behavior in L1 or L2 cache at fine granularity. Sec-
ond, a dynamic warp throttling via cores sampling (DWT-CS)
technique is proposed to alleviate cache thrashing. DWT-CS
monitors the MPKI at L1, and when it exceeds a specific
threshold, the number of active warps in each GPU core is
sampled. Then, the active warps for all cores will be throttled
to the number of warps associated with the winner core (the
core that achieved the highest performance during the sam-
pling period). Finally, an improved cache indexing function,
namely, pseudo random interleaving cache (PRIC) is pro-
posed. It is based on polynomial modulus mapping [17], and
is used to mitigate associativity stalls and eliminate conflict
misses. PRIC near-randomly and fairly distributes memory
accesses over cache sets and thus efficiently utilizes the cache
resources. This is the first scheme that addresses three very
important GPGPU cache problems including thrashing, asso-
ciativity contention and streaming behavior. Experimental
results demonstrate that the proposed scheme requires sim-
pler hardware and achieves a harmonic mean 1.87� and 1.5�
performance improvement over previously proposed cache-
conscious wavefront scheduler (CCWS) [10] and the memory
request prioritization buffer (MRPB) [14], respectively.

This paper also presents a characterization methodology
to analyze and measure the amount of locality that exist in
GPGPU workloads by using a fully-associative unbounded
cache. The characterization results reveal that many GPGPU
applications have large working sets or poor cache reuse
and do not benefit from the cache hierarchy. On the other
hand, some GPGPU applications exhibit a high level of
cache thrashing and/or associativity contention.

The rest of this paper is organized as follows. Section 2
describes the GPGPU programming model, baseline archi-
tecture, and simulation environment. Section 3 describes
workload characterization methodology. Section 4 describes
the proposed cache management scheme, SACAT. Experi-
mental results are presented in Section 5, and a comparison
to previous work is presented in Section 6. The conclusions
are given in Section 7.

2 GPGPU PROGRAMMING MODEL AND BASELINE

ARCHITECTURE

2.1 GPGPU Programming Model

The CUDA [18] or OpenCL [19] programming model allows
programmers to express the data-level parallelism in terms
of fine-grain scalar threads. A typical GPGPU application
consists of multiple kernels, or grids. Each kernel contains a
group of thread blocks or cooperative thread array (CTA).
Each thread block is composed of three-dimensional scalar
threads. Threads within the same thread block communi-
cate with each other through a shared on-chip scratchpad
memory and synchronization primitives. During run-time,
each consecutive 32 threads are grouped together to

formulate a warp, or a wavefront. Warps are executed in a
single instruction multiple-threads (SIMT) model. In a SIMT
execution model, all threads within the same warp execute
the same PC (i.e., execute in a lock-step), threads are
allowed to follow different control flow paths, and a long
memory latency is tolerated by a zero-overhead warp con-
text switching technique.

2.2 Baseline Architecture

Fig. 1 illustrates the baseline GPGPU architecture. It consists
of multiple GPU cores, called Streaming Multiprocessors
(SMs),1 and a group of memory partitions. Each SM has its
own private L1 data cache, read-only texture cache, constant
cache, and software-managed scratchpad memory, called
shared memory. It also contains a group of execution units,
such as single instruction multiple data units (SIMDs) and
special function units (SFUs). Each memory partition has a
slice of the L2 cache and a GDDR5 memory controller which
are shared among the SMs. The SMs and the memory parti-
tions are connected via an on-chip network.

The thread block scheduler distributes the thread blocks
among SMs in a load-balanced round-robin fashion [20]. A
thread block is dispatched to an SM only if the required
resources of the thread block are available on this SM (e.g.,
register file, shared memory, warp scheduler entries, etc.).
Thread blocks are subdivided by hardware into warps.
Each SM contains a number of warp schedulers. The warp
scheduler employs a greedy-then-oldest (GTO) scheduling
policy. GTO runs a single warp until it stalls, then picks the
oldest ready warp [10]. The baseline architecture handles
control flow divergence and re-convergence using a post
dominator (PDOM) re-convergence stack [21]. Each SM con-
tains a memory-coalescing unit which attempts to coalesce
memory requests of active threads within each warp into
the fewest possible cache line-sized memory requests.

2.3 Simulation Environment

The baseline architecture is simulated using GPGPU-Sim
v3.2.1 [20], a publicly-available cycle-accurate GPGPU sim-
ulator. The GPU simulator is configured to be similar to
NVIDIA Fermi GTX480 [4], [22]. The configuration file

Fig. 1. Baseline GPGPU architecture.

1. In this paper, we use the terms GPU core and SM interchangeably.
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provided with GPGPU-Sim is used without any modifica-
tions. The configuration parameters are listed in Table 1.
MSHR refers to the miss status handling register. The simu-
lator was modified to implement the proposed techniques,
in order to evaluate them.

A wide range of GPGPU CUDA workloads was consid-
ered, including applications from Rodinia [23], Poly-Bench
[24], and NVIDIA SDK [25]. NN, IIX, SPMV_S, and KM are
adopted from GPGPU-sim workloads [20], MapReduce [26],
SHOC [27], and CCWS applications suite [10], respectively.
Table 2 lists all of the 22 applications2 used. The table also
shows the characterizations of these applications based on
contention type and streaming behavior. For more details
about this characterization methodology, see the following
section. In our experiments, all applications run until comple-
tion, except for SYRK, GESUMMV, and SCLUSTER, due to
their long simulation times. More specifically, SYRK and
GESUMMV run only up to 100 million instructions, while
SCLUSTER runs up to 300million instructions.

3 WORKLOAD CHARACTERIZATION

3.1 Characterization Methodology

In order to assess the cache sensitivity of GPGPU applica-
tions, the selected applications listed in Table 2 are run
using three different cache scenarios:

1) Totally bypassing all memory accesses, i.e., no caches.
2) Bounded caches using the baseline configuration (16

KB L1, 786 KB L2)
3) Fully-associative unbounded caches. Only cold

misses occur in this scenario. Therefore, it represents
the upper bound on the performance improvement
gained from using caches.

Note that, in unbounded caches, the other cache resour-
ces (e.g., MSHRs) are still limited to the baseline configura-
tion listed in Table 1. Fig. 2 plots the normalized instruction
per cycle (IPC) for each of the simulated applications using
the three cache scenarios.

Furthermore, to analyze the locality in GPGPUworkloads,
the amount and type of locality in each simulated application
is measured, in both the bounded and unbounded scenarios.
Jia, et al. [14] found that there are different types of locality
existing in GPGPU workloads. In this paper, locality is classi-
fied into twomain categories:

1) Intra-warp data locality occurs when a cache line is
referenced and re-referenced by the same warp. Intra-
warp locality can be divided further into two subcate-
gories [10]:
a) Intra-thread data locality occurs when a cache line

is referenced and re-referenced by the same
thread.

b) Inter-thread data locality occurs when a cache line
is referenced and re-referenced by two different
threads within the same warp.

2) Inter-warp data locality occurs when a cache line is ref-
erenced and re-referenced by two different warps.
Inter-warp locality can be divided further into four
subcategories:
a) Intra-block data locality occurs when a cache line

is referenced and re-referenced by two different
warps within the same thread block.

b) Intra-core data locality occurs when a cache
line is referenced and re-referenced by two
different warps within different thread blocks,
and the two thread blocks are assigned to the
same core.

c) Inter-core data locality occurs when a cache line is
referenced and re-referenced by two different
warps within different thread blocks, and the
two thread blocks are assigned to different cores.
Obviously, this locality is utilized only through
L2 cache [28].

d) Inter-kernel data locality occurs when a cache line
is referenced and re-referenced by two different
warps within different kernels, e.g., a data item
was written by a kernel and a consecutive kernel
accesses this data.

Fig. 3 plots the amount and type of locality in L1 and L2
for all applications. The left bar represents the locality found
in unbounded caches, whereas the right bar represents

TABLE 1
The Simulated Baseline GPGPU Configuration

SM configuration 15 SMs, 700 MHZ, 1,536 threads,
32 threads/warp, 48 warp/SM,
SIMD width = 32

L1 Cache 16 KB/4-way associativity/128 B cache
line/32 MSHR entries

L2 Cache 6 partitions x 128 KB/16-way/128 B
cache line/ 32 MSHR entries

# Warp schedulers 2 per SM (24 warps per scheduler)
Warp scheduling Greedy-then-oldest (GTO) [10]
Memory Model 6 GDDR5 Memory Controllers (MCs),

BW=179.2 GB/s

TABLE 2
The Simulated GPGPUWorkloads

Name Abbrev. Contention Type +
Streaming behavior

Black Scholes [25] BLK Fully L1/L2
Scalar Product [25] Sprod Fully L1/L2
Vector Addition [25] VAdd Fully L1/L2
Fast Walsh Transform [25] FWT Fully L1
Needleman-Wunsch [23] NW Fully L1
Hot Spot [23] HS Fully L1
Separable Convolution [25] CONV Fully L1
Structured grid [23] SRAD XW-Conflict+Semi
3D Stencil [23] 3DS XW-Conflict
2D Convolution [24] 2DCONV XW-Conflict
2 Matrix Multiplication [24] MM XW-Conflict
Stream Cluster [23] SCLUSTER XW-Conflict+Semi
Breadth First Search [23] BFS XW-Capacity+Semi
Sparse Matrix Vec. Mult. [27] SpMV XW-Capacity
Inverted Index [26] IIX XW-Capacity+Semi
Kmeans Clustering [10] KM XW-Capacity
Symmetric Rank-k [24] SYRK XW-Cap+IW-Cont
Vector Matrix Multiply [24] GESUMMV XW-Cap+IW-Cont
MCARLO Pi Estimator [25] PEst Friendly
B+tree [23] B+tree Friendly
Back Propagation [23] BP Friendly
Neural Network [20] NN Friendly

2. In this paper, the words workloads and applications are used
interchangeably.
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locality in bounded caches. The L2 cache was evaluated
when the L1 cache is bounded.

GPGPU workloads exhibit a high level of contention at

the few available L1 cache resources, e.g., MSHR entries,

cache lines and Miss_Queue entries. When a cache miss

occurs, the MSHRs are checked to see whether the same

request has already been issued for another warp and is still
pending. If the request is found, a MSHR_MIX entry is allo-

cated to ensure that the returned request services both

warps. If the request is not found in the MSHRs, an empty

MSHR entry is allocated, a cache line is reserved and a read

memory request is placed in the Miss_Queue. However, a

cache controller may fail to service a miss request due to the

lack of any requested resource. There are four types of reser-

vation fails. MSHR_MIX_ENTRY_FAIL,MSHR_ENTRY_-
FAIL, LINE_ALLOC_FAIL, and MISS_QUEUE_FULL occur

when the controller fails to allocate MSHR_MIX entry,

MSHR entry, cache line, and Miss_Queue entry respec-

tively. In this case, the memory request causes the pipeline

to stall, and it will retry over the next cycles until all the

requested resources are available. Fig. 4 plots the L1

reservation failures per kilo cycles for the simulated work-

loads, while Fig. 5 plots the misses per kilo cycles (MPKI).

3.2 Characterization Results

Using the experimental results shown in Figs. 2, 3, 4, and 5,
the simulated GPGPU applications can be classified into
three main categories:

Fig. 2. Studying cache sensitivity for three different scenarios (1) cache bypassing, (2) bounded cache and (3) unbounded cache.

Fig. 3. L1/L2 data locality analysis. The left bar represents the locality found in unbounded caches while right bar for bounded caches.

Fig. 4. L1 cache resource contention (using baseline configuration).
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3.2.1 Streaming Applications

Streaming behaviour can occur at L1 and/or L2 caches.
There are two types of streaming behavior: fully-streaming
and semi-streaming. The former occurs when all the mem-
ory access stream generated by the application exhibits an
overall high miss rate (up to 99 percent) and does not bene-
fit from caches. The later occurs when a part of the memory
requests are full of locality, while the other part shows
streaming behavior.

For instance, the BLK, Sprod, and VAdd applications
exhibit fully streaming behavior in both L1 and L2. They
show a noticeable high miss rate in bounded and
unbounded caches, as shown in Fig. 3. These workloads
do not benefit from caches at all and using caches
degrades the performance. As shown in Fig. 2, using
bounded or unbounded caches leads to loss in perfor-
mance, compared to bypassing. Therefore, it is better to
bypass their memory accesses, since they do not benefit
from caches and cause useless unintended contention at
L1, as shown in Fig. 4.

For FWT and NW, the unbounded cache is better than
both the bounded cache and bypassing. These applications
exhibit fully streaming behavior in bounded and
unbounded L1 cache. However, they have high inter-kernel
locality at unbounded L2, whereas bounded L2 is not large
enough to cache the data transferred between kernels (see
Fig. 3b), causing a fully streaming behavior. In this work,
both applications are bypassed. For future work, it is recom-
mended to improve L2 cache behavior by making use of
inter-kernel locality.

HS and CONV exhibit fully streaming behavior in L1
(see Fig. 3a), and a high hit rate at L2 (see Fig. 3b). They
have high inter-core locality and, thus, they are L2 cache
sensitive. Therefore, it is better to bypass L1 cache only for
these applications. Inspection of the code of these work-
loads reveals that they rely on the on-chip scratchpad mem-
ory to benefit from locality. Therefore, when they are
cached in the scratchpad, they show streaming behavior in
L1. It is important to note that the application that uses
scratchpad does not necessarily show streaming behavior in
L1. For instance, BP relies on scratchpad and exhibits high
locality at L1.

Other applications, such as SRAD and BFS, exhibit semi-
streaming behavior. In Section 4.3, we will discuss this
behavior in more details.

3.2.2 Cache Contention Applications

For cache contention applications, such as SCLUSTER, IIX,
and SYRK, the unbounded cache outperforms the bounded
cache and cache bypassing by an order of magnitude, as
shown in Fig. 2. These workloads have high data locality at
the unbounded L1, as shown in Fig. 3. However, the limited
size of the bounded L1 cache and the large number of
threads a GPGPU executes concurrently makes such work-
loads susceptible to conflict and capacity misses [29].3

Conflict misses mainly occur when a group of warps or a
group of threads within the same warp access the same
cache set within a short period of time, causing inter-warp
conflict contention (XW Conflict) or intra-warp conflict con-
tention (IW Conflict) respectively [13], [30]. The warps/
threads compete for the few available cache lines in the
cache set (typically between 4-6 lines [7]). Consequently, a
high level of LINE_ALLOC_FAIL stalls (associativity stalls)
is observed. Increasing the associativity of the L1 cache is
capable of alleviating this type of contention [14].

Capacity misses mainly occur when the cache footprint
per-warp is large, leading to inter-warp capacity contention
(XW Capacity). In this case, no conflict contention occurs but
the L1 cache cannot fit all the running warps’ working set.
Therefore, the warps will compete for the cache lines and
the cache becomes susceptible to thrashing. Cache thrashing
causes a high level of MSHR_ENTRY_FAIL due to the large
number of misses compared to the available MSHR entries.
Increasing the L1 cache capacity is capable of alleviating
this type of contention [14]. Moreover, it has been shown
that the code style is directly linked to either alleviating or
increasing cache contention [14]. Writing a highly-divergent
non-optimized code, e.g., programs that contain loops, may
cause severe cache contention [11].

Based on this conflict analysis, the workloads SRAD,
3DS, 2DCONV, MM, and SCLUSTER suffer from inter-
warp conflict contention. These applications exhibit high
intra-block locality at unbounded L1, as shown in Fig. 3a.
However, the bounded L1 does not benefit from this local-
ity. Fig. 4 demonstrates that these applications exhibit a
high level of LINE_ALLOC_FAIL stalls, which indicates the
occurence of inter-warp conflict contention.

On the other hand, BFS, SPMV, IIX, and KM suffer from
inter-warp capacity contention. They exhibit high intra-
warp locality at the unbounded cache (see Fig. 3), which are
mostly intra-thread (not shown in figure). The running
warps evict the cache lines of each other, and cause severe
thrashing at the bounded L1 (see Fig. 3a) and high levels of
MSHR_ENTRY_FAIL stalls (see Fig. 4). Fig. 5 indicates that
these thrashing workloads exhibit a higher level of MPKI
compared to other streaming applications. This is because
the streaming workloads are typically optimized to generate
fewer well-coalesced memory requests, whereas thrashing
workloads generate a large number of non-coalesced mem-
ory requests within a few instructions due to memory diver-
gence. That is, a load instruction in streaming applications
generate 1-4 missed requests, whereas a load instruction in
thrashing applications may generate up to 32 missed
requests. Thus, the misses over the committed instructions

Fig. 5. L1 misses per kilo Instructions (using baseline configuration).

3. In this paper, the way we identify conflict and capacity misses is
different from the literature [14].
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for thrashing applications is relatively higher than stream-
ing workloads. Therefore, MPKI can be used as a good mea-
sure to detect thrashing.

Finally, SYRK and GESUMMV suffer from intra-warp
conflict contention and inter-warp capacity contention. The
LINE_ALLOC_FAIL stalls and MPKI for these applications
are high. Section 4.2 discusses the behavior of these work-
loads in details. Note that, in thrashing applications, the L2
cache backs up the L1 evicted cache lines for future reuse,
except for GESUMMV. In GESUMMV, the cache footprint
per-warp is large to the extent that thrashing also occurs at
L2, as shown in Fig. 3b.

3.2.3 Cache-Friendly Applications

For Pest, B+tree, BP, and NN, the performance of the
bounded cache is much better than that of cache bypassing,
and is comparable to that of the unbounded cache. These
workloads exhibit a high hit rate at both L1 and L2, and
their L1 reservation fails are reasonable.

Table 2 summarizes the contention type and streaming
behavior of all the GPGPU workloads discussed above.

4 THE SACAT CACHE MANAGEMENT SCHEME

This section describes the three techniques used in the pro-
posed SACAT cache management scheme to bypass stream-
ing behavior, alleviate thrashing and avoid conflicts.

4.1 Dynamic Warp Throttling via Cores Sampling

Warp throttling was proposed as an effective method to
alleviate the cache thrashing problem [10], [11]. The number
of active running warps per core is throttled to a lower
number, such that their cache footprint can be fit in the
cache. Static warp throttling (SWT) (a.k.a., Best static warp
limiting [10]) statically runs an exhaustive search to find the
best number of active warps that achieves the highest per-
formance. All possible warp numbers per warp scheduler
(24 to 1 in our case) were tested and the best performing
one is selected. On the other hand, dynamic warp throttling
(DWT) aims to find the best number of active warps dynam-
ically using the hardware. CCWS is an implementation of
DWT [10]. CCWS uses a victim tag array, called the lost
locality detector, to detect warps that have lost locality due
to thrashing. These warps are prioritized until they exploit
their locality, while other warps are descheduled (not
allowed to issue any load instructions).

CCWS has a fine-grained control on warp throttling
(i.e., the number of active warps is varied over time
depending on the thrashing level). This gives CCWS an
advantage over SWT. However, it has been shown that the
coarse-grained SWT outperforms CCWS on average [10].
This is due to the fact SWT tries to find the best trade-off
number of warps that works well at different thrashing
levels and improves the overall performance. Moreover,
CCWS is a reactive system, i.e., each warp has to lose local-
ity before trying to preserve it by warp throttling [11],
whereas SWT throttles the number of warps directly with
no need for lost locality detection. However, SWT is not a
practical solution, since the programmer needs to perform
an exhaustive search for each application. Moreover, SWT
is input sensitive, which means that the best number of

warps changes when running the same application with
different input sets [10].

In this work, we propose dynamic warp scheduling via
core sampling technique that employs exhaustive search as
in SWT. However, the search process is handled by the
hardware. Therefore, DWT-CS overcomes the shortcomings
of SWT. The concept of cores sampling was proposed by
Lee, et al., [31]. It applies different cache management poli-
cies to different cores, and collects samples to assess their
behavior. In this work, a similar mechanism is employed to
find the best number of active warps that alleviates thrash-
ing and efficiently utilizes the L1 cache.

4.1.1 DWT-CS Mechanism

As shown in Fig. 5, L1 MPKI can be used as a good measure
to detect thrashing. Therefore, DWT-CS monitors the MPKI
at L1 over several sampling periods. At the end of each sam-
pling period, it checks whether the MPKI has exceeded a
specific threshold for N consecutive periods. If so, all GPU
cores are sampled with different numbers of active warps,
which is equal to the core ID. For example, core#1 throttles
the active warps to only one warp, core#2 throttles them to
two warps, and so on. After M sampling periods, all cores
send the number of instructions committed during the sam-
pling periods to the coordinator core, which is the middle
core, core#8, in our case. The coordinator core finds the core
ID (i.e., number of warps) that has executed the maximum
number of instructions. The winner core ID is propagated to
all the cores. Next, the cores throttle the number of active
warps to the new propagated value, which is used until the
end of kernel execution. When the same kernel is
relaunched and the MPKI exceeds the threshold, it does not
sample the cores again. Instead, it uses the same number of
warps obtained before.

4.1.2 Comparison with SWT and CCWS

Table 3 compares the best number of active warps achieved
using SWT, DWT-CS as well as the range of active warps
under CCWS. DWT-CS achieves the same number of warps
as SWT for all benchmarks, except for BFS which consists of
small kernels and suffers from phased execution (i.e., non-
steady thrashing level). For BFS and other non-steady thrash-
ing applications, changing the number of active warps over
time based on the thrashing level, like CCWS does, is slightly
better than fixing the number of warps as in DWT-CS. In con-
trast, for steady thrashing applications, such as Kmeans and
IIX, applying constant number of active warps, as in DWT-
CS, is more effective than varying the number of warps. This
is because DWT-CS does not impose overhead to detect

TABLE 3
The Number of Active Warps (per Warp Scheduler)

Achieved by SWT, DWT-CS and CCWS

Benchmark SWT DWT-CS CCWS

SPMV 1 1 1-4
Kmeans 1 1 1-2
BFS 5 7 2-15
IIX 2 2 1-7
SYRK 2 2 2-4
GESUMMV 1 1 1-2
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thrashing all the time and adjust the number of active warps.
Instead, it detects thrashing only once at the beginning of ker-
nel execution. We will compare the performance of CCWS
against DWT-CS in Section 5.2.

4.1.3 Implementation Overhead

The proposedDWT-CS technique is a cost-effectivemethod. It
slightly outperforms CCWS on average over thrashing appli-
cations, as will be discussed in Section 5, while requiring neg-
ligible hardware overhead. More specifically, CCWS uses
extra hardware (victim tag arrays) to detect thrashing,
whereas DWT-CS only needs two counters per core to calcu-
late the committed instructions and cache misses, in order to
measure theMPKI over sampling periods. A few registers are
also used to save the best number of warps per-kernel for
future reuse. To enable the inter-core communication that is
used to convey sampling results, we rely on the existing inter-
connection between the Block Scheduler and the cores (see
Fig. 1). That is, all the cores send the IPC to the Block Sched-
uler (a centralized node), then the Block Scheduler sends these
information to the nearest core (assuming the middle core).
Afterwards, the middle core uses its SIMD unit [18] to find
the best core that achieved the highest IPC. We modeled this
inter-core communicationwith a constant number of n cycles.
In our experiments, we set n=200 cycles. DWT-CS requires
about 60 K cycles to detect thrashing and find the optimal
number ofwarps, which is a negligible overhead in practice.

4.2 Pseudo Random Interleaved Cache

The problem of CPU cache associativity has been widely
studied in the literature. Several techniques were proposed
to improve the cache indexer function, which is responsible
for interleaving memory accesses over cache sets. These
techniques include prime modulo interleaving [32], one-
skew storage [33], logical data skewing [34], Xor-based func-
tions [35] and pseudo random interleaving [17]. They were
proposed as alternatives to conventional sequential inter-
leaving, in an attempt to improve cache associativity and
avoid conflicts. It has been shown that PRIC is a cost-effec-
tive high-performance approach [177], [36], [37]. In this
work, we study the impact of applying PRIC for GPU
caches and see the effectiveness of PRIC in alleviating asso-
ciativity stalls and eliminating conflict misses.

4.2.1 PRIC Mechanism

In a sequential interleaving cache consisting of M ¼ 2m

cache sets and a cache line size of B ¼ 2b bytes, an N-bit

memory location whose address is A[N � 1:0], has a cache
index A[mþ b� 1:b] and a tag address A[N � 1:mþ b].
Fig. 6a depicts a simple example of how memory locations
are interleaved over cache sets using sequential interleav-
ing. An application that generates a stream of M memory
references in a short period of time with an access stride S,
has an n-way conflict degree, where n=M/gcd(M;S), and
gcd stands for the greatest common divisor. From this rela-
tion, it can be easily observed that even strides will cause a
high level of conflict degree. For example, using the sequen-
tial memory interleaving shown in Fig. 6a, a reference
stream with an access stride of 2 (i.e., 0, 2, 4, 6, 8, 10, 12, 14)
has a four-way conflict degree. In other words, all memory
references will be mapped to only four cache sets out of 8.
Each pair of the addresses (0,8), (2,10), (4,12), (6,14) will
map to the same cache set and may cause associativity
stalls, if the cache set contains fewer cache lines than the
mapped memory references. The worst-case scenario occurs
when the reference sequence has a stride which is a multiple
of M. This causes a one-way conflict, where all references
map to the same cache set. On the other hand, all odd
strides have no common divisor with M that is greater than
one (recall that M is a power-of-2 number). Therefore, odd
strides do not cause any conflicts and the memory referen-
ces will be distributed evenly over the cache sets. However,
it is important to note that even strides, especially strides
that are multiples ofM, occur frequently in GPGPU applica-
tions. For instance, Fig. 7 shows a GPGPU frequently occur-
ing scenario to access a 2-D matrix. In SYRK, the output
element (i,j) is calculated by multiplying row(i) by row(j) of
matrix A. The rows of A are aligned to the cache line size
(i.e., row size=K�line size) and are stored in a row-major
order form in the main memory. In each loop iteration, each
32 threads within a warp read 32 elements from different
consecutive rows of matrix A. When K is a multiple of the
number of cache sets (32 in the baseline configuration), all
memory reference loads will map to the same cache set
causing a high level of associativity stalls and conflict
misses. A matrix whose row size equals 32�n�line size,
where n >¼1, frequently exists in GPGPU applications.

In PRIC, as shown in Fig. 6b, eachM consecutive memory
locations have a different permutation over the cache sets
such that they are near-randomly interleaved. This near-ran-
dom interleaving makes PRIC resistant to all strides, espe-
cially strides that are multiples of M. PRIC is based on
polynomialmodulusmapping inwhich thememory location,
A, is expressed as a polynomial function whose coefficients
are in the Galios GF(2). For example, memory location 21 is

expressed as ðx4 þ x2 þ 1Þ. Let P ðxÞ be a polynomial of order
m, and AðxÞ be the polynomial of order N that is associated

Fig. 6. Memory locations interleaving over cache sets (Assuming a 6-bit
memory address, a 1-byte cache line, and eight cache sets.)

Fig. 7. An example of a one-way conflict degree in the SYRK workload.
When K is multiple of the number of cache sets, all 32 threads will map
to the same cache set.
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with memory location A. Then, AðxÞ can be uniquely repre-
sented as AðxÞ ¼ V ðxÞ � P ðxÞþ RðxÞ. where V ðxÞ and RðXÞ
are polynomials over GF(2), and RðxÞ is of order less thanm.
V ðxÞ and RðxÞ can be viewed as the polynomial representa-
tions of the corresponding tag and cache index. Therefore, the
cache index of address RðxÞ ¼ AðxÞmodPðxÞ. It has been
shown that for the best performance and permutation, P ðxÞ
should be an irreducible polynomial function (I-Poly). P ðxÞ is
said to be irreducible if no two non-constant polynomials gðxÞ
and hðxÞ with rational coefficients such that P ðxÞ ¼ gðxÞ�
hðxÞ exist [38]. Rau [17] showedhow the computation of cache
index RðxÞ ¼ AðxÞmodP ðxÞ can be carried out by the vector-
matrix product of the address and amatrix of single-bit coeffi-
cients, called the H-matrix (i.e., I[m� 1:0] = A[N � 1:b]�
H-matrix). In GF(2), multiplication and addition are equiva-
lent to the AND and XOR boolean functions. If the matrix is
constant, the AND gates can be omitted and the mapping
then requires just XOR gateswith fan-in from 2 to n [36].

4.2.2 Implementation Overhead

The baseline configuration has 32 ¼ 25 cache sets, thus,
m=5. There are six irreducible polynomial functions of
degree 5 over GF(2) [38] and they are Poly (37, 41, 47, 55, 59,
61). In this work, Poly(37) is selected empirically. The corre-
sponding Xor-ing boolean equations of Poly(37) are listed in
Fig. 8.4 As shown in the figure, the cache index I[4:0] is gen-
erated by Xor-ing some bits of the memory address A[26:7].
These Xor-ing equations can be implemented using 2-3 lev-
els of two-input Xor gates.

It is important to note that one of the limitations to
employing PRIC in a single-thread CPU cache is that it
exists on the critical path of any cache access. Therefore, any
cache access latency may increase by one cycle due to the
latency of the Xor gates [36], [37]. This latency can degrade
the performance of some non-conflict cache-friendly appli-
cations (i.e., applications that don’t benefit form PRIC).
However, when it comes to GPGPUs, the situation is differ-
ent. GPGPUs have a throughput-oriented architecture.
Their design philosophy is built on having a large number
of warps/threads per core that are interleaved with each
other in order to hide long memory latency. We experimen-
tally study the performace impact when we increase the
cache access latency by one cycle. Only 0.05 percent perfor-
mance loss was observed for friendly applications.

4.2.3 Comparison with Cache Bypassing

Cache bypassing on associativity stalls was proposed
recently [14]. However, this method does not utilize cache

resources efficiently. In many cases, bypassing occurs while
the other cache sets are underutilized. For instance, MRPB
[14] allows memory requests that encounter associativity
stalls (i.e., LINE_ALLOC_FAIL) to bypass the L1 cache [14].
In the SYRK workload, shown in Fig. 7a, when all the 32
threads map to the same cache set, only the first four threads
will successfully allocate a cache line (assuming four-way
associativity), while the remaining 28 threadswill bypass the
L1 cache. This occurs because all the lines within the cache
set will be reserved by the first four threads. However, per-
forming an empirical search reveals that the other cache sets
are underutilized. Therefore, it is better to distribute the
remaining threads over the underutilized cache sets, instead
of bypassing. Moreover, in the second iteration, the same 32
threads access the following elements from the matrix rows
and they will map to the same cache set again. The first four
threads hit the cache, while the next four threads cause
misses, and consequently, they evict the previous threads’
cache lines. This behavior is repeated over the next loop iter-
ations, i.e., the first four threads and the second four threads
evict the lines of each other. This behavior causes severe con-
flict misses for SYRK and GESUMMV as shown in Fig. 3a.
Hence, cache bypassing is not an efficient method to handle
the GPU cache associativity problem.

4.2.4 Comparison with High Associativity Caches

Increasing the associativity of the L1 cache is a straightfor-
ward approach to mitigate associativity stalls and conflict
misses. Moreover, building a fully associative cache can
completely eliminate all conflict misses. However, increasing
associativity requires a considerable hardware overhead (tag
comparators and large data selectors), which increases both
access latency and power consumption [39]. On the other
hand, PRIC can achieve almost the same performance of fully
associative cache (as will be discussed in Section 5.2), while
incurring low hardware overhead (2-3 levels of Xor gates).

4.3 Dynamic Fine-Grained Cache Bypassing
(FG-CB)

Fig. 9 plots the miss rate of the L1 cache after applying
DWT-CS and PRIC, compared to the baseline case and the
unbounded cache. The figure shows that some applications
benefit from the proposed throttling-resistant and conflict-
avoiding techniques. 3DS, KM, SYRK, and GESUMMV
achieve a low miss rate that is comparable to that of the
unbounded cache. On the other hand, other applications
still exhibit a high miss rate with DWT-CS and PRIC. For
example, SRAD, SCLUSTER, BFS, and SPMV exhibit reduc-
tion in the miss rate using DWT-CS and PRIC, compared to

Fig. 8. The Xor-ing equations corresponding to Poly(37).

Fig. 9. The L1 miss rate after applying DWT-CS and PRIC.

4. The proofs and theorems related to the polynomial modulus and
the method to generate the H-matrix and Xor-ing equations can be
found in [17].
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the baseline. However, this reduced miss rate is still high,
i.e., 75, 70, 68, and 50 percent respectively. There are two
reasons behind these high miss rates. First, SRAD and
SCLUSTER suffer from noticeable streaming behavior (up
to 70 and 50 percent miss rate in the unbounded cache,
respectively). It is better for an application, such as SRAD,
to bypass the 70 percent that shows streaming behavior and
cache the the remaining 30 percent that has good locality.
Second, some applications have high locality which cannot
be fully utilized by DWT-CS and PRIC. For example, BFS
shows a miss rate of 5 percent in the unbounded cache.
However, a large portion of the locality found in this appli-
cation is not utilized by the cache due to the random behav-
ior of some memory accesses [14], and the long reuse
interval between memory requests that access the same
cache line. The proposed workload characterization meth-
odology reveals that these streaming memory accesses do
not only cause useless contention at L1/L2 caches, but also
severely interfere with cache-friendly memory accesses.
Therefore, the SACAT scheme employs a dynamic fine-
grained cache bypassing technique to alleviate streaming
behavior at fine-granularity.

4.3.1 Fine-Grained Cache Bypassing Mechanism

The straightforward approach to dynamically bypass
streaming behavior is to enable or disable the whole cache.
In this method, when the overall miss rate of cache is higher
than a predefined threshold, the whole cache is disabled.
The coarse granularity of bypassing in this method can effec-
tively deal with fully-streaming applications. However, it is
not efficient with semi-streaming workloads that require a
finer granularity to bypass only the streaming part of mem-
ory requests and cache the other part containing locality.

Using FG-CB, a memory request is bypassed based on the
miss rate of the base-address that this request belongs to. For
example, a kernel takes three pointers of arrays Ker-
nelF< < < (n,1),(m,1)> > > (float�A, float� B, float� C) has
three base-addresses (A, B and C). Any load instruction in
kernelF should be referred to one of these addresses as a base
address. Fig. 10 plots the miss rate for the fully-streaming
workload VAdd, and two semi-streaming workloads, BFS
and SRAD. As shown in figure, VADD shows a high miss
rate over all base-addresses (A, B and C). Coarse-grained or
find-grained cache bypassing can efficiently bypass all mem-
ory requests of VADD. On the other hand, SRAD has a
noticeable streaming behavior at some base-addresses (E_C,
W_C, S_C and N_C), whereas J_cuda and C_cuda contain

some locality that can be utilized by caches. A similar behav-
ior also exists in BFS. Therefore, A fine-grained cache bypass-
ingmechanism is required for such applications.

In the SACAT implementation, instead of monitoring the
miss rate of the whole cache, the miss rate of every base-
address is calculated. When a new kernel is launched, the
miss rate of every base-address found in the kernel is sam-
pled. Based on the experiments performed, it was found
that the miss rate calculated in the first sampling period can
by used as a good measure to anticipate the streaming
behavior of the base-address during the rest of the execution
time. To confidently determine whether to bypass a base-
address or not, at least N_Accesses of memory requests gen-
erated to this base-address should be observed. If the num-
ber of misses of any base-address is greater than M_Misses,
at the first sampling period, all memory requests belonging
to this base-address are forced to bypass the cache until the
end of the kernel. Otherwise, the requests are cached. The
values of N_Accesses and M_Misses used in this experiment
were 1,000 and 800, respectively.

4.3.2 Implementation Overhead

In FG-CB, a hardware-based table is used tomonitor themiss
rate of the L1 and L2 caches for the first sampling period.
Each table entry corresponds to one base-address and con-
tains five fields: the base-address value, the number of cache
accesses at L1/L2, and the number of cache misses at L1/L2.
The number of table entries can be fixed. The workloads con-
sidered here have at most seven base-addresses.

4.3.3 Per-Base-Address versus Per-PC Cache

Bypassing

Dynamic cache bypassing at Per-PC load instruction granu-
larity was proposed in [40]. However, our experiments indi-
cate that the per-PC cache bypassing can be ineffective for
some workloads, e.g., BFS and SRAD. In such applications,
a dependency exists between a streaming PC-load instruc-
tion and a cache-friendly PC-load instruction. In other
words, the cache line that is brought by the streaming PC-
load instruction is re-referenced by a consecutive cache-
friendly PC-load instruction that has the same base-address.
In this scenario, if the first PC-load is forced to bypass due to
its streaming behavior, the consecutive PC-load will not
able to utilize its locality. This scenario is avoided in the
per-base-address mechanism, since the entire base-address
region is either cached or bypassed.

4.4 Putting it All Together (SACAT)

The FG-CB, DWT-CS, and PRIC techniques are combined in
one algorithm, called SACAT. This combines the advan-
tages of the individual techniques and achieves the highest
performance for the GPGPU workloads. It is important to
note that both streaming and thrashing applications exhibit
a high miss rate at L1 (as shown in Fig. 3). Therefore, FG-CB
and DWT-CS must be combined appropriately to avoid the
mischaracterization of a thrashing application as a stream-
ing one. First, the conventional sequential cache indexer is
replaced by PRIC, such that each cache access has to pass
through the PRIC xoring equations to avoid conflict misses
and stalls. Second, an application is examined to determine
whether it is thrashing or not. To achieve this, SACAT

Fig. 10. The L1 miss rate per-base-address for fully- and semi- stream-
ing workloads.
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monitors the MPKI of L1 for the first N sampling period. If
it exceeds a specific threshold for all N periods, the applica-
tion is characterized as thrashing, and DWT-CS runs an
exhaustive search to find the best number of warps. This
approach leverages the fact that thrashing applications
exhibit a high MPKI over other streaming applications (as
shown in Fig. 5). After DWT-CS runs for the first N sam-
pling periods to find the appropriate number of warps that
alleviates thrashing, if any, FG-CB runs for the following
sampling period. It monitors the miss rate of every base
address at the L1 and L2 caches using the hardware-based
per-base-address table. If any of the base addresses achieves
N_Accesses memory requests, the number of misses that
occurred during this interval is calculated. If that number
exceeds M_Misses, the cache controller is updated to bypass
all the memory requests belonging to this base-address until
the end of the kernel. Otherwise, it is cached.

The three proposed techniques are grouped together in
an orthogonal and synergistic way. SACAT does not only
cache a part of the memory that contains locality but also
caches them in an efficient manner in order to avoid thrash-
ing and conflict.

5 EXPERIMENTAL RESULTS

The experimental results are organized as follows. Section
5.1 examines the performance of the proposed SACAT cache
management scheme compared to the baseline and presents
a detailed analysis of its advantages. Section 5.2 compares
the proposed SACAT technique to previous work. Section
5.3 studies the sensitivity of L1 cache size. Finally, Section 5.4
is devoted to calculating total hardware overhead.

5.1 In-Depth Analysis

Fig. 11 presents the performance improvement (in IPC with
respect to the baseline) of the proposed techniques, FG-CB,
DWT-CS, PRIC, and the aggregated SACAT, for all bench-
marks. FG-CB, DWT-CS and PRIC improve the perfor-
mance of GPGPU applications by 1.25�, 1.13� and 1.3�,
respectively, over the baseline. When all these techniques
are aggregated in the SACAT algorithm, to combine their
advantages, the performance improvement is about 1.6� on
average. The applications SYRK and GESUMMV exhibit an
improvement of up to 21X and 16.8X, respectively. More-
over, SACAT does not result in any performance degrada-
tion in the cache-friendly applications.

An individual techniquemay be sufficient for some appli-
cations, while other applications require a combination of

two or more techniques. Fully-streaming applications only
benefit from FG-CB. Since the L1 cache is disabled in FG-CB,
such applications do not suffer from thrashing nor conflicts.
PRIC and FG-CB show performance improvement for inter-
warp conflict workloads, as opposed to DWT-CS. However,
PRIC provides better performance improvement than FG-
CB on average. Inter-warp capacity conflict applications (i.e.,
thrashing-only applications) show a significant performance
improvement using DWT-CS only, compared to a slight
improvement using FG-CB. Applications that exhibit both
intra-warp conflict contention and inter-warp thrashing
(e.g., SYRK and GESUMMV) show a higher performance
improvement when employing FG-CB and PRIC than that
achieved using DWT-CS. Moreover, they show a superior
performance improvement using SACAT. In these work-
loads, PRIC eliminates conflict misses and fairly distributed
memory access over cache sets. Nevertheless, the L1 cache
capacity is not large enough to keep all warps’ working set
and, thus, DWT-CS throttles the number of active warps to
alleviate thrashing. Therefore, these workloads achieve a sig-
nificant performance improvement when both DWT-CS and
PRIC are combined. In other words, neither DWT-CS nor
PRIC alone is able to individually achieve themaximumper-
formance improvement for these applications.

Fig. 12 plots the reduction in L1 reservation fails (all fails
shown in Fig. 4 combined) when combining DWT-CS and
PRIC, as well as when applying SACAT. Combining DWT-
CS and PRIC reduces the reservation fails by 80 percent on
average. By adding FG-CB, i.e., using SACAT, reduces the
reservation fails further to 90 percent. Applications such as
3DS, 2DCONV, IIX, KM, SYRK and GESUMMV show a sig-
nificant reduction (up to 90 percent). SRAD, MM, SCLUS-
TER, BFS and SPMV_S also show a considerable reduction,
between 20 and 60 percent, when combining DWT-CS and

Fig. 11. The performance improvement achieved using each technique individually.

Fig. 12. The L1 reservation fails (normalized to the baseline).
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PRIC. Moreover, SRAD, SCLUSTER and BFS exhibit further
reduction using SACAT, due to the efficiency of FG-CB in
bypassing streaming memory accesses that cause useless
contention at the L1 cache. However, MM, SCLUSTER
and SPMV_S still show a high level of fails, especially
MSHR_ENTRY_FAIL. These applications still suffer from
some sort of thrashing and streaming contention even after
applying SACAT. Further investigations and applying
more advanced techniques can mitigate the remaining
MSHR contention.

5.2 Comparison to Previous Work

The proposed SACAT technique was compared to CCWS
[10] and MRPB [14]. As discussed in Section 4.1, CCWS
addresses the thrashing problem only and does not consider
conflict contention nor streaming behavior. On the other
hand, MRPB employs two techniques to alleviate the thrash-
ing and conflict problems. First, a FIFO requests buffer is
used to reorder memory references such that requests from
the same warp are grouped and sent to the cache together,
thereby reducing the number of warps that access the cache
at a time. Second, MRPB allows memory requests that
encounter associativity stall to bypass the L1 cache.
However, the bypassing strategy does not efficiently utilize
the available cache resources, as discussed in Section 4.2.
Table 4 lists the configuration parameters used for CCWS,
MRPB, and SACAT. In CCWS, the value Kthrottle was tuned
to our baseline architecture as described in [10], and sequen-
tial set indexing is used. InMRPB, the configuration in [14] is
used, and it achieved the highest performance. In SACAT,
the configuration parameters were selected based on empiri-
cal analysis. To ensure fair comparison, fully-streaming
applications were excluded, since CCWS and MRPB do not
address the streaming behavior problem.

Fig. 13 compares the performance improvement achieved
in cache contention applications using DWT-CS and SACAT
to that of CCWS and MRPB. Overall, SACAT outperforms
CCWS and MRPB by a harmonic mean of 1.87� and 1.5�,
respectively. For inter-warp conflict contention applications,
SACAT improves performance by a harmonic mean of 2.3�

and 1.4� over CCWS and MRPB, respectively. This is due to
CCWS’s unawareness of conflict contention, and the better
efficiency of PRIC in utilizing cache sets over MRPB’s cache
bypassingmechanism. For inter-warp thrashing applications,
SACAT results in a harmonic mean 1.11� and 1.35� perfor-
mance improvement over CCWS and MRPB, respectively.
When we compare CCWS to DWT-CS only, it exhibits 1.05�
performance improvement on average. DWT-CS shows a sig-
nificant improvement in applications that exhibit a consistent
thrashing level and coherent control flow divergence, e.g., IIX
andKM.On the other hand, CCWS performs slightly better in
SPMV and BFS, due to the unsteady thrashing level of these
applications. SPMVand BFS are highly control flowdivergent
and thus the per-warp cache footprint changes over time
depending on warp’s active mask. DAWS is a divergence
aware warp throttling mechanism that can further improve
the performance of such applications [11]. Note that, in BFS,
SACAT slightly outperforms CCWS and DWT-CS because
FG-CB bypasses streaming memory accesses efficiently. For
applications that exhibit both intra-warp conflict contention
and inter-warp thrashing, SACAT achieves a superior perfor-
mance improvement and outperforms CCWS andMRPB by a
harmonicmean 18.7� and 4�, respectively.

Increasing the associativity of the L1 cache is a straightfor-
ward approach to mitigate conflict misses. For example,
AMD’s recent Graphics Core Next (GCN) GPUs use 64-way
associativity for their 16 KB L1 caches [41]. Fig. 14 compares
the performance improvement obtained using PRIC on inter-
warp and intra-warp conflict contention applications, to that
obtained using high associativity and fully-associative caches.
In all cases, the L1 cache capacity is fixed and an idealistic
one-cycle hit latency is assumed. PRICwith four-way associa-
tivity outperforms the 16-way, 32-way, and 64-way caches by

TABLE 4
The Configuration Parameters of CCWS, MRPB, and SACAT

CCWS Config

Kthrottle 8
Victim Tag Array 8-way 16 entries per warp

(768 total entries)
Warp Base Score 100
Cache indexing sequential interleaving

MRPB Config

Signature warp ID (resulting in 48 queues)
Drain policy non-greedy-fixed-order
Buffer size 8 requests
Bypass option bypass-on-assoc-stalls

SACAT Config

DWT-CS Sampling Period 10 K cycles
DWT-CS MPKI_threshold 10
FG-CB N_Accesses 1000
FG-CB N_Misses 800
PRIC I-Poly Poly(37)

Fig. 13. Performance improvement (normalized to baseline) of SACAT
compared to CCWS, MRPB, and DWT-CS.

Fig. 14. Comparing the performance of applying PRIC to high and full
associativity (normalized to baseline).
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a harmonic mean 1.6�, 1.4�, and 1.16�, respectively. More-
over, PRIC achieves 97 percent of fully-associative cache’s
performance. However, increasing associativity requires a
considerable hardware overhead (tag comparators and large
data selectors) which increases both access latency and power
consumption [39].

5.3 Sensitivity to Cache Size

Fig. 15 depicts the performance of baseline and SACAT at
various cache sizes. The results are normalized to the base-
line architecture with a 16 KB L1 cache. The performance
improvements of SACAT over the baseline with different
cache size are 2.3�, 2� and 1.7� for 16, 32 and 48 KB respec-
tively. Consequently, as the cache size decreases, SACAT
shows greater performance improvement relative to the
baseline architecture. This is because smaller L1 cache size
increases the occurrence of cache thrashing and conflicts.

5.4 Overall Hardware Overhead

Table 5 shows the total hardware overhead of SACAT
scheme. Overall, SACAT requires 5,270 bits of SRAMbits (i.e.,
less than 1 KB). In addition, it requires some combinational
logic circuitry to implement the PRIC’s Xor gates and other
control circuits, and we do not expect this additional logic
will be significant. On the other hand, CCWS requires 3.75 KB
per-core of SRAM bits to implement Victim Tag array (768
entries� 40 bits per entry [11] = 3.75 KB), andMRPB requires
1.875 KB per-core of SRAM bits to implement FIFO queues
(48 queues� 8 requests per queue� 40 bits request size [14]).
Thus, SACAT is a cost-effectivemethod.

6 RELATED WORK

Different methods have been proposed in the literature to
alleviate the problems associated with GPU caches. These
methods can be classified into the following four categories:

6.1 CTA Throttling

Jog, et al., proposed CTA-aware-locality scheduling [42]. It
gives a group of CTAs higher priority to keep their data in
the L1 cache such that they get the opportunity to reuse it.
Kayiran, et al., proposed dynamic CTA scheduling, which
attempts to allocate the optimal number of CTAs per-core in
order to reduce contention in the memory sub-system [8].
Lee, et al., explored two alternative thread block scheduling
schemes [9]. Lazy CTA scheduling was proposed to leverage
the GTO scheduler to determine the optimal number of
CTAs per core. They also showed howblockCTA scheduling

(BCS), where consecutive thread blocks are assigned to the
same cores, can utilize inter-block locality (i.e., intra-core
and inter-core locality). It is obvious that the fine-grained
warp throttling mechanisms, such as DWT-CS, are better
than the coarse-grained CTA throttling mechanisms. Based
on experiments (not shown here), static warp throttling was
found to outperform static CTA throttling by 2� on average.

6.2 Warp Throttling

In addition to the CCWS technique discussed above, several
other techniques were proposed to improve warp throttling.
Rogers, et al., proposed divergence-aware warp scheduling
(DAWS) [11]. DAWS is a divergence-based cache footprint
predictor that estimates the amount of locality in loops
required by each warp. DAWS uses these predictions to pri-
oritize a group of warps such that the cache footprint of
these warps does not exceed the capacity of the L1 cache. Li,
et al., observed that throttling techniques leave memory
bandwidth and other chip resources (e.g., L2 cache, NOC
and EUs) significantly underutilized [12]. Thus, he pro-
posed a cache bypassing scheme on top of CCWS, called
priority-based cache allocation (PCAL), that allows extra
inactive warps to bypass the cache and utilize the other on-
chip resources. Therefore, PCAL reduces the cache thrash-
ing and effectively employs the chip resources that would
otherwise go unused by a pure thread throttling approach.
A similar approach was proposed by Zheng, et al., called
adaptive cache and concurrency (CCA) [13]. CCA improves
DAWS by allowing extra inactive warps and some stream-
ing memory instructions from the active warps to bypass
the L1 cache and utilize the on-chip resources. However,
PCAL and CCA employ bypassing while leaving cache sets
underutilized. For example, recall the SYRK example dis-
cussed in Section 4.2. PCAL throttles the number of active
warps that can access cache to only one warp and allows
two warps to bypass the cache in an attempt to utilize chip
resources. However, as discussed above, the cached warp
only utilizes one cache set. Moreover, it utilizes that cache
set in an inefficient manner, since the threads map to the
same set causing severe associativity stalls and conflict
misses. In contrast, SACAT effectively utilizes the cache sets

Fig. 15. L1 cache sensitivity (normalized to baseline). The cache config-
uration of 16, 32, and 48 KB caches are 32sets-4way, 64sets-4way and
64sets-6way respectively.

TABLE 5
Overall Hardware Overhead

Technique Hardware Overhead Total (#bits)

DWT-CS MPKI calculation: 2 counters
(per-core) � 16 bits � 15 cores = 480
bits Table to save the best #number of
warps per-kernel for future reuse: 8
bits (to save kernel Id) + 5 bits
(#number of warps) = 13 bits � 5
entries = 65 bits

545 bits

PRIC no registers required, only 2-3 levels
of Xor gates per core

0

FG-CB Miss rate per-base-address table: 5
bits (base-address Id) + 10 bits
(L1 cache accesses) + 10 bits (L1
cache misses) + 10 bits (L2 cache
accesses) + 10 bits (L2 cache misses) =
45 bits � 7 entries = 315 bits � 15
cores = 4,752 bits

4,752 bits
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by allowing two warps to access the cache, and fairly dis-
tributing their memory requests over sets. Note that, PCAL
or CCA can be employed on top of SACAT for further per-
formance improvement and efficient utilization of L1 cache
sets, as well as on-chip resources.

6.3 FIFO Buffers

The MRPB technique, discussed in Section 4.2, uses FIFO
buffers to prioritize memory requests that are generated by
the same warp. It also uses cache bypassing on associativity
stalls, and it has been demonstrated that the bypassing
mechanism is inefficient to utilize the available resources.

6.4 Cache Replacement Policy

Chen, et al., [16] proposed G-Cache to alleviate cache
thrashing by identifying the hot lines that have been evicted
before and an adaptive cache replacement policy is used by
the L1 cache to protect these hot lines. Chen also proposed
coordinated bypassing and warp throttling (CBWT) [15].
CBWT adopts a thrashing-resistant CPU cache management
scheme, called protection distance prediction (PDP). PDP
employs cache bypassing to enable protection on hot cache
lines and, thus, alleviates cache thrashing. However, exces-
sive bypassing may over-saturate the on-chip network.
Therefore, the cache bypassing policy is coordinated with a
dynamic warp throttling mechanism to avoid over-saturat-
ing on-chip resources. However, existing schemes do not
address the associativity problem, and employ a cache
replacement policy to alleviate thrashing, as opposed to
SACAT which uses a warp throttling mechanism. Chao,
et al., proposed a locality-driven dynamic bypassing solu-
tion that augments the L1 tag store with locality filtering.
The new hardware component forces the L1 cache to only
store the data with high reuse and short reuse distances
while bypasses the other requests [43].

7 CONCLUSION AND FUTURE WORK

Throughput processors, such as GPGPUs, rely on massive
multithreading to hide long memory latency. However, the
high number of active threads a GPGPU executes concur-
rently leads to severe cache thrashing and conflict misses.
This paper proposed a low-cost streaming-aware conflict-
avoiding thrashing-resistant GPGPU cache management
scheme. The proposed scheme efficiently utilizes the GPGPU
cache resources and addresses all the problems associated
with GPGPU caches, by employing three orthogonal techni-
ques. Experimental results demonstrate that the proposed
scheme achieves 1.87� and 1.5� performance improvement
over CCWS and MRPB, respectively. Moving forward, we
plan to study the impact of running multiple kernels on the
GPU cache hierarchy and exploiting the inter-kernel locality.
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