
Locality-Centric Data and Threadblock Management
for Massive GPUs

Mahmoud Khairy
Purdue University

abdallm@purdue.edu

Vadim Nikiforov
Purdue University

vnikifor@purdue.edu

David Nellans
NVIDIA

dnellans@nvidia.com

Timothy G. Rogers
Purdue University

timrogers@purdue.edu

Abstract—Recent work has shown that building GPUs with
hundreds of SMs in a single monolithic chip will not be practical
due to slowing growth in transistor density, low chip yields, and
photoreticle limitations. To maintain performance scalability,
proposals exist to aggregate discrete GPUs into a larger virtual
GPU and decompose a single GPU into multiple-chip-modules
with increased aggregate die area. These approaches introduce
non-uniform memory access (NUMA) effects and lead to
decreased performance and energy-efficiency if not managed
appropriately. To overcome these effects, we propose a holistic
Locality-Aware Data Management (LADM) system designed to
operate on massive logical GPUs composed of multiple discrete
devices, which are themselves composed of chiplets. LADM has
three key components: a threadblock-centric index analysis, a
runtime system that performs data placement and threadblock
scheduling, and an adaptive cache insertion policy. The runtime
combines information from the static analysis with topology
information to proactively optimize data placement, threadblock
scheduling, and remote data caching, minimizing off-chip traffic.
Compared to state-of-the-art multi-GPU scheduling, LADM
reduces inter-chip memory traffic by 4× and improves system
performance by 1.8× on a future multi-GPU system.

Index Terms—GPGPU, Multi-GPU, NUMA

I. INTRODUCTION

GPU accelerated workloads are commonly used in deep

learning and exascale computing systems [79], [81]. These

workloads exhibit high levels of implicit parallelism, which

enables performance scalability, but only if GPUs can continue

to scale their hardware resources. Over the past decade,

GPUs have more than quadrupled the number of Streaming

Multiprocessors (SMs) in their designs, while simultaneously

increasing their on-chip transistors by an order of magnitude.

Prior work by Arunkumar et al. [5] demonstrates linear per-

formance scalability if GPU resources (SMs, SM-interconnect

bandwidth, registers, caches, and DRAM bandwidth) are able

to scale proportionally. However, building a GPU with hun-

dreds of SMs in a single monolithic GPU die will not be

possible due to low manufacturing yields and the high cost of

building large chips at small technology nodes [5], [33].

To overcome these problems and enable continuous

performance scaling as Moore’s law slows [13], [73],

researchers have proposed increasing GPU transistor count by

aggregating multiple GPUs together (as a single logical GPU)

as well as disaggregating single-GPUs into scalable multi-

chip-modules [5], [51], [53], [63]. Compared to single-chip

GPU
Chiplet

Inter-Chiplet Connection Network

Controller chip
(Kernel/TB Scheduler, ..)

..... HBM

Silicon Interposer or Package Substrate

GPU GPU

Switch

GPU GPU

Single Logical GPU

.…..

.…..

HBM

HBMHBM

GPU
Chiplet

GPU
Chiplet

GPU
Chiplet

Fig. 1: Future massive logical GPU containing multiple dis-

crete GPUs, which are themselves composed of chiplets in a

hierarchical interconnect.

systems, chiplet based architectures 1 are desirable because

they provide a larger aggregate chip perimeter for I/O, enabling

a higher number of DRAM interfaces to be connected to

the system and thus scale memory bandwidth and capacity

alongside compute resources [5], [6], [28], [32], [48], [79].

Future chiplet-based designs will be limited by the size of

silicon interposers or the short haul, high bandwidth intercon-

nects needed to traverse a small printed circuit board. Com-

pared to chiplets, multiple GPUs are more easily combined

into large coordinated systems but suffer from lower inter-GPU

bandwidth, which increases the NUMA performance penalty.

As shown in Figure 1, these approaches are complimentary and

it is likely that both will be employed in future systems with

hierarchical interconnects to create a massive logical GPU.

Architecture and runtime systems must coordinate to main-

tain the existing single-GPU programming model and support

transparent scaling for current CUDA programs. The goal

is to create a single programmer-visible GPU that may be

comprised of hierarchical locality domains. Maintaining this

illusion enables rapid software development on small local

GPU resources while allowing scalable performance on larger

and more complex GPU systems. Transparently overcoming

locality effects will be a challenging problem for GPUs over

the next decade. Such an extreme NUMA scale requires new

techniques to place pages, cache data, and schedule the many

thousands of threads managed in such systems.

1In this paper, chiplet and multi-chip-module (MCM) are used interchange-
ably.

Recent work on static analysis for transparent multi-GPU

programs, CODA [36], is a step in the right direction. Using

the compiler to perform index analysis, CODA calculates the

width of the data accessed by one threadblock and ensures

that threadblocks and the data they access are placed on the

same GPU for the locality types they can identify. However, a

more robust analysis of the code is required to exploit different

GPU access patterns on hierarchical GPUs. In this work, we

deconstruct the accesses patterns observed across a diverse set

of GPU applications and detail which patterns are captured

by recent state-of-the-art NUMA-GPU mechanisms and those

that remain unexploited. We show that many of the previously

unexploited patterns can be successfully detected by static

analysis, which we use to drive data placement, caching,

and thread scheduling decisions in our Locality-Aware Data

Management (LADM) system.

Static index analysis has been extensively used in sequential

code to perform affine loop transformations, eliminate data

dependencies, and partition work for automatic paralleliza-

tion [3], [46]. In many ways, a static analysis of a GPU

program is more straightforward than a sequential one, as the

parallelism in CUDA programs is inherent to the programming

model. A parallel GPU program can be transformed into a

sequential program by converting the threadblock and grid

dimensions into loop index variables on data-parallel outer

loops. Once this transformation is made, any sequential pro-

gram analysis can be applied to the GPU code. However, it is

less obvious how the nature of the hierarchical programming

model (i.e., threadblocks and kernels) can be combined with

sequential locality analysis to map schedulable chunks of work

(i.e., threads within the same threadblock) to data structure

accesses. To tackle this issue, we introduce the concept of

datablock locality analysis that maps each threadblock in a

kernel to chunks of data we predict it will access.

Fundamentally, the programming model for GPUs is dif-

ferent than for CPUs. Due to their massively-multithreaded

nature, GPU programs are composed of many fine-grained

threads, where each individual thread exhibits little spatial

or temporal locality to global memory. This, combined with

the expressiveness of thread IDs in the CUDA programming

model creates both a new challenge and an interesting oppor-

tunity to apply static analysis for NUMA data placement and

thread scheduling. We make three primary contributions over

the state-of-the-art NUMA-GPU systems:

• We perform a detailed analysis of the locality types

present in GPU programs and show that no state-of-

the-art NUMA-GPU system can exploit them all. We

propose LADM, which uses static index analysis to

inform runtime data placement, threadblock scheduling,

and remote caching decisions by exploiting a new logical

abstraction called the GPU datablock.

• We leverage this automatic analysis to perform thread-

block and datablock co-placement within hierarchical

GPUs. By pre-calculating an optimized data layout in the

compiler, LADM can orchestrate prefetching that negates

on-demand page-faulting effects and adjust the thread-

block schedule based on dynamic data structure sizes.

• Building on our program analysis, we architect a novel

compiler-informed cache organization that selectively

inserts requests into each L2 cache partition based on

the memory request’s origin relative to the data’s home

node and its likelihood for reuse. By understanding the

expected reuse patterns for datablocks, LADM’s cache

hierarchy minimizes both inter-GPU and inter-chiplet

bandwidth, the primary factor influencing the scalability

of future GPUs.

II. MOTIVATION AND BACKGROUND

Figure 1 depicts what next-generation exascale GPU

compute accelerators may look like in the future. Within a

single GPU, monolithic GPU dies will be subdivided into dis-

aggregated chiplets, where each chiplet is composed of a group

of SMs associated with its own local High Bandwidth Memory

(HBM) and hardware thread block scheduler. Several different

ways to connect these chiplets have been proposed. Interposer-

based through-silicon vias (TSVs), similar to those proposed

in AMD’s future exascale node [53], [79], high rate signaling

through organic substrate-based connections similar to

NVIDIA’s Ground Reference Signaling (GRS) [5], [65], [70],

Intel’s Embedded Multi-die Interconnect Bridge (EMIB) [27]

or waferscale integration using Silicon Interconnection Fabric

(Si-IF) [62], [63] are all possible solutions. While these links

may provide high enough bandwidth to alleviate the NUMA-

GPU performance penalty [79], such solutions are likely to be

expensive and hard to manufacture. These same technologies

could be conservatively applied to provide cost-effective,

bandwidth restricted interconnections [5]. Architectural and

software techniques are necessary to reduce off-chiplet

traffic and mitigate the performance loss due to bandwidth

constraints. While reducing off-chiplet traffic across exotic

high-speed connections may not lead to performance

improvement, LADM still improves overall energy efficiency

by minimizing data movement among the chiplets [6].

NUMA-GPU designs will not only exist within on-package

solutions. With the arrival of high bandwidth switch-connected

GPUs such as NVIDIA’s DGX-2 and NVLink [55], [74] inter-

connect, aggregating multiple discrete GPUs into a large vir-

tual GPU is now being considered [51]. Because these GPUs

may operate as both individual GPUs and in aggregate (as a

single GPU), this aggregation must be done with more limited

hardware support, primarily by the GPU runtime software. In

addition, the type of hierarchical NUMA present in Figure 1

must be accounted for both page placement and threadblock

scheduling. Previous, hierarchy-oblivious approaches [5], [36],

[51] to NUMA-GPU should be applied recursively, accounting

for the fact that chiplets on the same discrete GPU will have

greater peer-to-peer bandwidth than chiplets that reside on

different GPUs.

CPU Thread 1

CPU Thread 2

CPU Thread 3

CPU Thread 4

TB1 TB2 TB3 TB4

TB5 TB6 TB7 TB8

TB9 TB10 TB11 TB12

TB13 TB14 TB15 TB16

CPU flat coarse-grain threads

Spatial locality

GPU hierarchical fine-grain threads.

TBs sharing the same row
T1 T2 T3

T4 T5 T6

T7 T8 T9

Fig. 2: OpenMP vs CUDA thread mapping for sgemm [75].

A. NUMA Locality in CPUs vs GPUs

Parallel programming on NUMA multi-processor and on-

chip multi-core CPU systems is a well studied problem.

Many proposals attempt to minimize NUMA memory access

latency transparently through software memory allocation and

migration policies [12], [20], [22], [26], [69] or thread-to-

core mapping [11], [19], [45], [78] techniques. Most of these

works are reactive solutions, wherein they detect locality and

congestion at runtime, then they perform page migration,

replication and thread-clustering based on runtime observa-

tions. Although reactive systems can be applied to GPUs, they

introduce a substantial performance penalty that can outweigh

the benefits. For example, data replication increases memory

capacity pressure, which is a scarce resource in contemporary

GPUs [84]. First-touch page placement policy can reduce

performance significantly, stalling SMs for 20-50 microsec-

onds [85]. Furthermore, the sheer number of threads in flight

makes reactive work re-distribution intractable, and the cost

of page migration in bandwidth-limited GPU workloads is

high [1], [7]. These all motivate a proactive, prediction-based

solution based on static program analysis.

The GPU programming model introduces new challenges

in the design space for NUMA systems that did not exist

in traditional NUMA-based multi-processor systems. Since

GPUs are programmed using a huge number of threads, the

work done by each individual thread is small, resulting in far

more thread scheduling decisions. To manage all these threads,

they are grouped into a multi-dimensional grid of threadblocks,

where each block operates on one multi-dimensional chunk

of the data structure. This is in contrast to the coarse-grain

nature of CPU threads, where far fewer threads do much more

work each. Figure 2 illustrates how threads in CPUs and GPUs

typically access a row-based data structure with an example

from the Parboil benchmark suite [75]. In the coarse-grained

CPU case, each thread has significant spatial locality and static

index analysis of the single-threaded code can easily determine

the access pattern of each thread. In the fine-grained GPU

case, the same per-thread analysis can be applied. However,

the reach of each individual thread is minimal, as each thread

will access very few (or even just one) elements in the row.

In order to capture the locality pattern in GPUs, an inter-

thread analysis must be performed, to account for both the

hierarchy of the grid (i.e. the presence of threadblocks) and

the dimensionality of the thread grid. This type of inter-thread

analysis is what we propose in LADM.

TABLE I: LADM vs state-of-the-art techniques

Batch+FT
[5]

Kernel-
wide [51]

CODA [36]

LD / TB
clus-

tring [43],
[76], [80]

LADM

Page placement
policy

First-
Touch

Kernel-
wide

chunks

Sub-page
round robin

Hand-
tuned
APIs

LASP

Threadblock
scheduling
policy

Static
batched
round
robin

Kernel-
wide

chunks

Alignment-
aware

batched
round robin

Hand-
tuned
APIs

LASP

Page alignment � � � � �

Threadblock-
stride aware

� � � � �

Row sharing � � � � �

Col sharing � � � � �

Adjacent local-
ity (stencil)

� � � � �

Intra-thread loc � � � � �

Input size aware � � � � �

Overhead

+First-
touch
page

faulting

-
+Hardware

for
sub-pages

+APIs -

Transparency � � � � �

Hierarchical-
aware

� � � � �

In addition, there is little intra-thread locality in highly-

optimized GPU applications with regular access patterns.

Instead of repeatedly accessing values on the same cache line,

GPU programs typically access values on the same line in

different coalesced threads. Optimized GPU programs also

make extensive use of a scratchpad memory, which effectively

prevents a large portion of global data from being accessed

more than once. The end result is that there is very little

global data reuse in GPU programs, making the initial decision

on where a page should be placed extremely important, since

temporal locality in upper-level caches is rare.

B. Existing NUMA-GPU Optimizations

In this section, we qualitatively and quantitatively study

state-of-the-art NUMA-GPU page placement and threadblock

scheduling techniques for both MCM [5] and Multi-GPU [36],

[51], [80] configurations, teasing out the fundamental proper-

ties they exploit and highlighting opportunities they miss.

The first work on chiplet-based GPUs by Arunkumar et

al. [5] optimizes per-chiplet locality through a synergistic

approach of statically batching threadblocks and performing a

reactive first-touch (Batch+FT) page placement policy. While

optimizing for locality, Batch+FT relies on the GPU unified

virtual memory (UVM) system to page fault data to the

chiplet on which the data is first accessed. While effective for

improving data locality, relying on the UVM first-touch page

placement policy can introduce a substantial performance

penalty as data must be page-faulted into GPU memory from

system memory, stalling SMs for 20-50 microseconds [85].

An ideal GPU locality management system should make an
educated guess about threadblock and data locality before

execution begins, so that data and computation can proactively
be pushed to the right location whenever possible.

��� ���

���� � ���� �

�	
	
�����

��
����

��������� �����������

���������

���� ���� ���� ��	�

Fig. 3: Behavior of kernel-wide partitioning in a 2-node system

with 2 threadblocks that access a 4 datablock data structure

with a stride of one datablock.

The second work, by Milic et al. [51], focuses on multiple

discrete GPUs. Their solution partitions both the kernels grid

and each data structure (i.e., every call to cudaMalloc) into N
contiguous chunks, where N is the number of GPUs. Each

chunk of data and threadblocks are then assigned to each

respective GPU. We call this technique kernel-wide grid and

data partitioning and it is pictured in Figure 3.

The third class of work, by Vijaykumar et al. [80] and Sun

et al. [76], propose a flexible and portable software interface,

called the Locality Descriptor (LD), to explicitly express

data locality with a series of highly-specific APIs. Similarly,

Cabezas et al. [15] rely on programmer input to shape the

data placement in the program. Locality-aware threadblock

clustering with code annotations was also proposed in a single

GPU context [43]. Our proposed research seeks to marry the

locality description benefits of these manual APIs with the

transparency benefits of the locality-agnostic techniques.

Finally, the most closely related work to our own is CODA

by Kim et al. [36]. CODA is a compiler-assisted index analysis

framework that calculates the data accessed by each thread-

block to ensure page alignment. CODA applies round-robin

page and sub-page interleaving and launches static batches of

threadblocks that share the same sub-page on the same node.

However, CODA is only able to exploit one specific locality

pattern and requires hardware changes to support sub-page

address mapping.

Table I breaks down a number of common access patterns

found in contemporary GPU workloads and details which

prior work is able to capture them, preventing off-chip traffic.

The first pattern that is Page alignment. If the data-placement

mechanism and threadblock scheduler are unaware of how

much data is accessed by a threadblock, and round-robin

threadblocks among chiplets, they may not place contiguous

threadblocks accessing the same page on the same chiplet.

The Batch+FT scheduler launches a statically-defined batch of

threadblocks (4-8 threadblocks) in a loose round-robin fashion

across chiplets, in an attempt to load-balance the workload.

Without knowing how big the threadblock batch should be,

unnecessary off-chip accesses may occur. On the other hand,

CODA is explicitly-designed to capture this pattern and to

ensure that the batches are page-aligned. Kernel-wide parti-

tioning captures this pattern as well by avoiding a round-robin

scheduler and launch threadblocks in coarse-grained chunks.

N
or

m
al

ize
d

Pe
rf.

0

0.2

0.4

0.6

0.8

1

1.2

xbar-90
GB/sec

xbar-180
GB/sec

xbar-360
GB/sec

ring-1.4
TB/sec

ring-2.8
TB/sec

Baseline-RR-sched Batch+FT-optimal Kernel-wide Partitioning CODA

Xbar Mutli-GPU Ring MCM-GPU

Fig. 4: Bandwidth sensitivity analysis of state-of-the-art tech-

niques normalized to a hypothetical monolithic GPU with

the same number of SMs. Performance is averaged over the

applications listed in Section IV-A.

The second pattern is Threadblock-stride aware. In this

pattern, threadblocks access one chunk of data, then jump with

a constant stride to read another chunk of data. Batch+FT is

able to capture this pattern since the first-touch page placement

policy will bring the page to the correct node. Kernel-wide

partitioning and CODA are unaware of this strided behavior

and will generate off-chip traffic if the stride does not acci-

dentally match their partitioning. Figure 3 depicts an example

of how kernel-wide partitioning works in a simple strided

accesses scenario where the stride is misaligned with the

system configuration, resulting in 50% off-chip accesses.

The next two patterns: Row sharing and Column sharing
occur when a row or a column of threadblocks in a two-

dimensional grid access the same row or column of a data

structure. None of the prior techniques account for these

sharing patterns, but kernel-wide partitioning is able to exploit

row sharing by dividing both the grid and data structures into

contiguous row-wise chunks.

The Adjacency locality pattern is commonly found in sten-

cil applications where adjacent threads share data on their

boundaries. The round-robin nature of Batch+FT and CODA

create memory traffic at the edge of every threadblock batch.

Since kernel-wide partitioning is scheduled in large chunks,

the number of grid cuts is minimized and so is the off-chip

traffic in stencil workloads.

The Intra-thread locality pattern is often found in irregular

workloads that have significant spatial locality in a single

thread [67]. Batch+FT naturally captures this locality by

moving pages to where they are first accessed. Finally, none

of the existing techniques account for the size of a program’s

data structures and are hence input-size unaware. We explicitly

design LADM to exploit all of these characteristics, which we

describe in more detail in Section III.

To demonstrate the relative performance of prior techniques

across a variety of integration domains, we implement and

evaluate several pieces of state-of-the-art work [5], [36], [51],

along with a baseline round-robin placement and scheduling

mechanism adopted from [79]. Figure 4 shows the average

performance of a four GPU NUMA system with 64 SMs

on each node for each evaluated technique. All values are

normalized to the performance of a hypothetical monolithic

GPU (where there is no NUMA access penalty to remote

memories) with the same number of SMs (256).

Node 0

Node 1

Node 2

Node 3

Compiler Runtime Hardware

Driver

LASP
MallocPC Kernel

/arg Locality Data
type address #Pages

400 Klaunch/2 RL Int (4B) 0X3466 80
404 Klaunch/1 NL with stride

=gDim.x*bDim.x
Int (4B) 0X390A 100

… … … … … …

executable

configuration
(page size,
#chips,
topology, ..)

Locality Table

kernel launch command
(PTX code and kernel arguments)

(BDim, GDim)

Compiler

Index
Analysis

void main() {

mallocMan(A);

mallocMan(B);

klaunch(B, A);

}

Source CUDA file

Fig. 5: End-to-end overview of our proposed Locality-Aware Data Management System. In the locality table: MallocPC, the

kernel/arg tuple, the locality type and data type are filled statically, whereas memory address and #pages are filled dynamically.

To understand the effect topology and interconnect has on

their relative performance, we simulate two different intercon-

nection configurations connecting the four GPU nodes. First,

a crossbar inter-GPU switch, similar to an NVSwitch [56],

with different link bandwidths. Second, a hypothetical high-

speed bi-directional ring with 1.4 and 2.8 TB/sec per-GPU

to model an MCM-like topology [5]. We model optimal

on-demand paging (Batch+FT-optimal) assuming page faults

have zero overhead. Ideally, we would like to achieve the

same monolithic chip performance with the cheapest possible

interconnection. We observe that uniformly, CODA outper-

forms Batch+FT-optimal and kernel-wide partitioning, thanks

to its alignment-aware static index analysis. Yet CODA only

achieves 52% and 80% of the monolithic GPU for the xbar-90

GB/sec and ring-1.4 TB/sec configurations. This implies that

while CODA should be considered state-of-the-art versus other

policies, there still remains significant room for improvement.

III. LOCALITY-AWARE DATA MANAGEMENT

The goal of Locality-Aware Data Management is

to optimize NUMA-GPU page placement, threadblock

scheduling, and GPU cache management based on access

patterns derived from a new threadblock-aware compiler pass

with unmodified applications.

A. LADM System Design

Figure 5 depicts an end-to-end overview of our proposed

LADM mechanism. First, we perform a symbolic off-line

index analysis on CUDA source code during the compilation

process, detailed in Sections III-B and III-C. Our analysis gen-

erates a locality table, which is embedded in the executable.

There is one row in the table for every access to a global

data pointer passed to every global CUDA function. The

compiler fills the locality table with the detected locality type,

data type and the MallocPC of the associated cudaMalloc-
Managed call from the CPU that allocated this data structure.

The MallocPC is used to connect the symbolic compile-time

information with dynamic runtime parameters. At runtime,

each cudaMallocManaged call inserts the number of allocated

for (int m = 0; m < Width/TILE_WIDTH; ++m) {

/*Original Code A: Row Horizontally-shared*/
As[ty][tx] = A [Row * WIDTH + m*TILE_WIDTH+tx];

// Prime comp.
// As[ty][tx] = A [(by * TILE_WIDTH + ty)

* (blockDim.x*gridDim.x) + tx + m*TILE_WIDTH];

/*Original Code B: Column vertically-Shared*/
Bs[ty][tx] = B [(m*TILE_WIDTH+ty)*WIDTH +Col];

// Prime comp. B[(m*TILE_WIDTH*blockDim.x*gridDim.x) +

// Prime comp. (ty*(blockDim.x*gridDim.x)+(bx*TILE_WIDTH+tx))]

…
}
/*Original Code C: No Locality*/
C[Row * Width+Col] = Pvalue;
// Prime comp.
// C[(by * TILE_WIDTH + ty) * (blockDim.x*gridDim.x)

+ (bx * TILE_WIDTH + tx)] = Pvalue;

loop-invariant(by,…)

loop-variant(m,gx,…)

loop-variant(m,…)

loop-invariant(bx,…)

loop-invariant(bx,by,…)

Fig. 6: Matrix multiplication indices analysis

pages and address information into the kernel/argument tuples

associated with this call. The mapping between cudaMal-
locManaged calls and kernel launch arguments is provided

by the CPU compiler. Fortunately, the way GPU programs

are written today, cudaMallocManaged(ptr); followed by ker-
nel launch(ptr); almost always occurs. This allows us to stati-

cally determine which cudaMallocManaged is associated with

which kernel argument. We use traditional pointer aliasing

analysis to determine the safety of this argument binding. If

the static analysis is not successful, then LADM has no choice

but to use a default policy for that particular call operation.

Finally, on every kernel launch, the Locality-Aware Scheduling

and Placement (LASP) component, described in Section III-D,

reads the locality table and decides the proper scheduling

policy, data placement and cache strategy to reduce off-chip

traffic and mitigate NUMA impact.

TB0 TB1

TB2 TB3

blockdim.xbl
oc

kd
im

.y

gr
id

im
.y

griddim.x

Data Blocks

Threadblock Grid

DB0 DB1

DB2 DB3

DB3 DB4

DB5 DB6

griddim.x*blockdim.x

TB0 TB1DB0 DB1 DB2 DB3

griddim.x*blockdim.x Stride in X-direction

Stride in Y-direction

(a) No datablock-locality with stride in
x and y direction.

������������	��
��
� ��������������������

���
����!

��
�"��!

��
����!

��
���"!

��$%�������&

���'��%�������&

���
����!

��
�"��!

��
����!

��
���"!

����7����%������

�
������%������

��$�����7������&
���
�

���'����
�������&
���
�

��$�
�
�������&
���
�

��
�'�

��

��
��7
��

���
�&

�
��

�

(b) Row or column datablock-locality with horizontal
or vertical threadblock sharing.

Single
Threadblock
with random
ITL accesses

T0

T1

..

Tn

DB0

DB1

…

DBn

Single
Threadblock
with regular
ITL accesses

T0

T1

..

Tn

DB1

DB0

…

DBn

(c) Intra-thread spatial locaity with regular-sized
datablocks (top image) and irregular-sized ran-
dom accesses (bottom image).

Fig. 7: Common locality types found in GPU workloads. Arrows indicate threadblock motion and datablocks are shaded based

on the shade of the threadblock (TB) that accesses them.

B. Threadblock-centric Locality Patterns

When work is launched to a transparent NUMA-GPU

system, threads are assigned to GPUs at the threadblock gran-

ularity [51]. To create a 1:1 mapping between data placement

and threadblock scheduling, we define a datablock as the

region of data accessed by a threadblock on each iteration

of the kernel’s outermost loop. For example, consider the

simplified kernel code for a dense A × B = C matrix-

matrix multiply listed in Figure 6. Each thread computes one

output element of the C matrix, striding through a row of

A and a column of B on each loop iteration. Across an

entire threadblock, each iteration of the loop will access a

square region of both matrix A and B. The data accessed

by the threadblock on this loop iteration is what we call

a datablock. The datablock’s size is directly related to the

size of the data type being accessed by each thread, the

dimensions of the threadblock and the components that make

up the array index. Using this taxonomy, it is possible to

classify the way threadblocks access data structures into one of

three categories: No datablock-locality, row/column-locality,

and intra-thread locality. Figure 7 plots a visual representation

of our datablock-locality definitions.

Figure 7a shows the No datablock-Locality (NL) case,

where threadblocks do not access the same datablocks. A

simple example of an application with no datablock-locality

is C = A + B vector addition, where each threadblock

accesses a contiguous region of A and B with no reuse or

sharing. Stencil applications are another example where there

is no locality among threadblocks, except among the adjacent

elements. Applications that have no datablock-locality come

in two forms. In the first, the kernel does not contain any

loops, each datablock is computed on and then discarded.

In the second, the kernel has loops and on each iteration

of the loop, the threadblock strides across the data structure

to another non-shared datablock. We call this movement

among datablocks, threadblock motion. As shown in Figure 7a,

threadblocks can access exclusive datablocks with a stride in

either the x or y direction. Strided accesses frequently exist

in GPGPU workloads when kernels increase the work in each

thread by launching fewer threads than elements in the input

data structures. Increasing work granularity per thread is a

widely used optimization in CUDA programs to reduce thread

initialization overhead and redundant computation [40].

It is also common for groups of threadblocks to share

groups of datablocks. Figure 7b illustrates a sharing pattern

where datablocks are accessed in either the row or column

directions, by either a row or a column of threadblocks

from the thread grid. For example, consider the A matrix in

A×B = C matrix-matrix multiplication. A row of datablocks

is shared among horizontal threadblocks. The accesses to the

B matrix in matrix-matrix multiply demonstrate a different

pattern. Here, a column of datablocks will be shared among

vertical threadblocks. Two other possible combinations occur

when rows are vertically shared and when columns are

horizontally shared. We call workloads that have Row and/or

Column Locality RCL workloads.

Figure 7c demonstrates the last type of common locality

present in GPU workloads: Intra-Thread Locality (ITL). For

these data structures, individual threads exhibit spatial locality

across strided, regularly-sized datablocks or data-dependent,

irregularly-sized datablocks. A number of prior works have

shown that these applications can have significant intra-thread

locality [29], [30], [34], [67], [68], making shared-cache

interference a significant problem.

C. Static Locality and Sharing Detection

We make the observation that static compiler analysis can

make reasonable predictions about which of these three com-

mon locality patterns exist in GPU programs. We show that

each locality and sharing pattern can be predicted based on an

index analysis of accesses to each global data structure. The

core idea is to extend traditional CPU index analysis [3] to

be aware of threadblock-level definitions of parallelism. This

index analysis is performed on the CUDA source code.

For regular kernels, there are two key elements we seek

to determine from the static analysis: (1) the direction the

TABLE II: Index analysis and taken actions. bx = blockIdx.x, by = blockIdx.y, gDimx = gridDim.x, m is an induction variable.

For the loopInvariant function, if one of bx or by is not listed, then none of the terms in the equation contain that variable.

For the loopV ariant function, if gDimx is not listed, then none of the terms in the equation contain gDimx.

Locality Types Index Equation Fig Dims
Threadblock
Scheduling

Data
Placement

Cache
Policy

1: No datablock-locality loopInvariant(bx, by, ...) + stride × m ∀ stride �= 1 7a 1D/2D Align-aware Stride-aware RTWICE

2: Row-locality, horizontally shared loopInvariant(by, ...) + loopV ariant(m, ...) 7b 2D Row-binding Row-based RTWICE

3: Column-locality, horizontally shared loopInvariant(bx, ...) + loopV ariant(m, ...) 7b 2D Col-binding Row-based RTWICE

4: Row-locality, vertically shared loopInvariant(by, ...) + loopV ariant(m, gDimx, ...) 7b 2D Row-binding Col-based RTWICE

5: Column locality, vertically shared loopInvariant(bx, ...) + loopV ariant(m, gDimx, ...) 7b 2D Col-binding Col-based RTWICE

6: Intra-thread locality loopV ariant(m) = m 7c 1D Kernel-wide Kernel-wide RONCE

7: Unclassified none of the above N/A 1D/2D Kernel-wide Kernel-wide RTWICE

threadblock moves on each loop iteration (i.e., threadblock

motion), and (2) which threadblocks in the grid share the

same datablocks. To determine these two variables, our source

analysis begins by identifying global array accesses and ex-

panding their index equations such that they are composed

of only prime variables. We consider the following variables

prime: thread IDs, block IDs, grid dims, block dims, induction

variables (i.e., the loop counter) and constants. Using these

variables, we then perform the analysis detailed in Algorithm 1

to classify the access, if possible.

Table II details the general index equations that are matched

by our static analysis to determine which type of locality

is predicted for each global array access. The compiler will

attempt to match each array access to one of these 6 mutually

exclusive types using Algorithm 1. The basic idea behind

our index analysis is to break the index in two groups of

terms. One group contains all the terms dependent on an

induction variable, which we call the loop-variant group.

The second group is composed of all the terms that are not

dependent on the induction variable, which we call the loop-
invariant group. That is, all the terms that are multiplied by

an induction variable are combined in the loop-variant group,

and all the remaining terms are collected in loop-invariant

group. The loop-variant group determines the threadblock

motion of the access, i.e., do threadblocks move horizontally

or vertically through the data structure and how far do they

move. Conversely, the loop-invariant terms do not change on

each loop iteration and are used to determine which datablock

each threadblock starts at.

To illustrate how global array-based data structures are

typically accessed in GPU programs, we refer to the matrix

multiplication example in Figure 6. The comments below the

accesses to matrix A, B and C decompose the Row, Col and

WIDTH variables into the prime components using backward

substitution and algebraic simplification. Once the access has

been broken down into invariant and variant components,

the compiler determines which key variables the groups are

dependent on and detects the locality type using Algorithm 1.

The classification in Algorithm 1 begins by testing the

special-case that the only term in the loop-variant group is

the induction variable multiplied by 1. If this is the case, then

we assume the access has intra-thread locality and classify

the access as ITL (row 6 in Table II). If that test fails, the

algorithm tests if the access has no locality, by checking if

Algorithm 1 Access classification algorithm.

1: if loopV ariant(m, ...) = m then
2: access = ITL;
3: else if loopInvariant(bx, by, ...) then
4: access = NoLocality;
5: stride = loopV ariant(m, ...)/m;
6: else if 2D Blocks then
7: if loopInvariant(by, ...) then
8: access = ThreadblockRowShares;
9: else if loopInvariant(bx, ...) then

10: access = ThreadblockColsShares;

11: if loopV ariant(m, gDimx, ...) then
12: access | = ColumnThreadblockMotion;
13: stride = loopV ariant(m, gDimx, ...)/m;
14: else if loopV ariant(m, ...) then
15: access | = RowThreadblockMotion;

the loop-invariant terms are dependent on both bx and by
(for 2D threadblocks) or just bx (for 1D threadblocks). If

so, we predict the access has no locality and then derive the

stride by dividing the loop-variant term by m, classifying the

access as row 1 of Table II. The access to C in Figure 6 is

an example of a no locality access. If neither of these first

checks are true, then we search for the 4 sharing patterns in

Figure 7b. If the loop-invariant term depends on by and not

bx, then the starting datablock of all the threadblocks with the

same by (i.e., all threadblocks in the same row) will be the

same. The same is true for a dependence on bx only, except

threadblocks in the same grid column start in the same place.

After the sharing pattern is determined, the loop-variant

terms are checked to determine the threadblock motion di-

rection. If the loop-variant terms depend on gDimx, then

we predict a whole row is being skipped on each iteration

and that the threadblock motion is in the column direction,

otherwise we predict that threadblocks move across a row of

the data structure so long as a loop-variant term exists. Based

on which combination of sharing and motion is detected, one

of rows 2 through 5 in Table II is selected for accesses in

2D threadblocks. The A access in Figure 6 is an example

of row threadblock motion, shared across threadblocks in a

grid row and the B access illustrates column threadblock

motion, shared across columns of threadblocks. If the array

index does not match one of the locality types in Table II, for

example the array index contains a data-dependent component

with no intra-thread locality (i.e., X [Y [tid]]), we leave it as

unclassified (row 7 in Table II) and the default placement

policy is used.

After classifying each of the global array accesses in a

kernel to one of the rows in Table II, the compiler’s work

is done. The final classification of each symbol is embedded

into the binary and used by the runtime system, described

in the next section, to determine appropriate placement and

threadblock scheduling.

D. Locality-Aware Scheduling and Page Placement

LASP is LADM’s runtime system that implements page

placement and threadblock scheduling based on locality pat-

terns identified by the compiler.

1) LASP Data Placement: Based on the locality pattern

detected for each data structure, LASP places data using the

following methods.

Stride-aware placement (Row 1 in Table II): To avoid off-

chip traffic from strided accesses, LASP must ensure that

all the datablocks accessed by a particular threadblock map

to the same node. Using the stride information provided by

the compiler analysis, we determine which pages need to

be co-located on a given node. We interleave the pages in

a round robin fashion using the page granularity given by

Equation 1. Note that, in order to determine which threadblock

maps to the next node we need to know what decision the

threadblock scheduler will make. Here we assume that the

aligned scheduler described in Section III-D2 will be used.

InterleavingGranularity =

⌈
strideSize

#nodes

⌉pageSize

(1)

Row- and column-based placement (Rows 2-5): LASP uses

row- or column-based page placement to put a whole row or

column of data on the same node. For example, when rows are

horizontally shared, row-based placement is used along with

the row-binding scheduler (Section III-D2). When column-

based locality is horizontally shared, column-based placement

is employed with row-binding scheduler. In column-based

placement, we interleave data over nodes in a round-robin

fashion using Equation 1 where stride size is the data struc-

ture’s row width.

Kernel-wide data partitioning (Rows 6 and 7): If a data

structure has intra-thread locality or unclassified irregular

accesses, such as graph traversal workloads. In this case, we

fall back to the default data placement strategy of kernel-wide

partitioning that has experimentally shown good performance

for workloads that use CSR data or perform stencil operations.

In these difficult to predict workloads, LADM relies on

our caching mechanism described in Section III-E to further

mitigate off-chip accesses by improving the L2 hit rate.

Timing of page placement and prefetching opportunities:
LASP works with UVM, relieving the programmer from the

burden of manually copying memory to the device. However,

unlike traditional first-touch page placement, LASP makes a

prediction about where every page should be placed. The pages

for the data structure can be copied to the correct node as

soon as the first kernel that uses a data structure is launched.

We must wait until kernel launch time in order to determine

the threadblock and grid sizes, which are required to compute

the datablock size and strides. However, if the compiler can

statically determine what the size of the first kernel launch will

be, copying could potentially be started before kernel launch.

It is possible that the placement derived from the first kernel

launch is sub-optimal for subsequent kernel launches. Despite

this potential disagreement, we find that the access pattern

from the first kernel launch is often consistent with subsequent

kernel launches. We leave the exploration of inter-kernel data

transformations as future work.

2) LASP Threadblock Scheduling: Based on the locality

pattern detected for each data structure, LASP schedules

threadblocks using the following methods.

Alignment-aware and kernel-wide scheduler (Rows 1, 6
and 7): In the absence of any strong row or column data

affinity, the scheduler attempts to load balance the work in a

page-aligned fashion. To avoid the issue of page-misalignment

suffered by Batch+FT [5], we can predict what the minimum

threadblock batch size by using Equation 2, where dividing

the page size by the datablock size tells us the minimum

number of consecutive threadblocks (MinTBBatch) that should

be assigned to each node to avoid misaligning datablocks and

threadblocks.

MinTBBatch =
pageSize

datablockSize
(2)

The minimum batch size will change depending on the page

size and kernel arguments, since the datablock size will vary

between kernels. As a result, the static batch size used in [5]

will suffer when the datablocks are mis-aligned. In workloads

with no locality, we have found that the datablock size is often

equal to bx × primitiveSize, where primitive size is 4 or 8

bytes (i.e., float versus double). Unlike CODA [36], which

changes the physical page interleaving granularity and pro-

poses fine-grained sub-page interleaving to ensure alignment,

LASP keeps the page interleaving as-is and applies dynamic

batch sizing using Equation 2 to maintain data alignment. The

scheduler interleaving granularity can be any multiple of the

batch size (i.e., n × MinTBBatch, n ≥ 1). In kernel-wide

scheduling, n is the maximum possible value, in which we

partition the threadblock grid into N contiguous chunks of

threadblocks, where N is the number of GPU nodes.

Row- and Column-binding scheduler (Rows 2-5): The row-

binding scheduler will place all threadblocks from the same

row on the same node such that row-level datablock-locality

is exploited. For a grid with more rows than GPU nodes, we

place contiguous rows of threadblocks on each node. Similar

to the row-binding scheduler, the column-binding scheduler as-

signs all threadblocks from the same column of the grid to the

same node in order to exploit column-level datablock-locality.

Hierarchical-aware Scheduling: To exploit the fact that

chiplets on the same discrete GPU will have greater bandwidth

than chiplets that reside on different GPUs, the hardware and

runtime system must coordinate to expose the hierarchically

clustered locality domains of the underlying hardware to

LASP. This allows LASP to assign adjacent threadblocks to

the physically co-located chiplets on the same GPU, before

moving to the next GPU. LASP employs a hierarchical affinity

round-robin scheduler wherein we assign a chuck of con-

tiguous rows or columns of threadblocks to a discrete GPU,

then the assigned threadblocks are scheduled in a round-robin

fashion among the chiplets within the GPU.

Data structure Locality Disagreements: Some kernels will

access multiple data structures in different ways. When this

happens, each structure will be placed in the way we predict

is optimal, but there is only one threadblock scheduler we can

select for a particular kernel. For example, in the matrix multi-

ply example in Figure 6, the placement of the A matrix favors

a row-binding threadblock scheduler, whereas the placement

of B favors column-binding scheduling. Since it is not possible

to give each data structure the scheduler that suits it best, we

must pick a winner. To break the tie, we favor the scheduling

policy that is associated with the larger data structure, because

it will intuitively have a bigger effect on off-chip accesses,

whereas smaller, frequently accessed data structures have a

much greater chance of residing and hitting in the requesting

node’s L2. So, in our matrix multiply example, if matrix A is

larger than B, we opt for a row-binding scheduling and rely on

the L2 cache to reduce the off-chip traffic of the smaller matrix

B. Unequal matrix sizes are commonly found in deep learning

applications where a small matrix of images is multiplied by

a large matrix of neuron weights.

E. Compiler-assisted Remote Request Bypassing

LASP is an efficient solution for regular workloads. How-

ever, there are additional opportunities presented in NUMA-

GPU when the workloads are irregular and have intra-thread

locality. Predicting the data-dependent access patterns of these

irregular applications is not possible at compile time. There-

fore, these irregular workloads, shown in Figure 7c, rely

heavily on L2 caches to reduce off-chip traffic and mitigate

NUMA issues [51]. We seek to improve these workloads via

an intelligent cache management technique we call cache-
remote-once that makes better use of cache in NUMA-GPUs.

Figure 8 illustrates the key idea of cache-remote-once
(RONCE). In our baseline, the L2 cache is shared between

local and remote traffic, similar to the dynamic shared L2

cache proposed in [51]. That is, the remote request checks the

local L2 first, and if it is a miss, the request is redirected to the

Home Node

L2$

SM SMSM

Remote Node

L2$

SM SMSM

HBM

RTWICE

RONCE

Fig. 8: llustration of existing NUMA caching policy cache-
remote-twice (the solid line) and our proposed cache-remote-
once cache management strategy (the dashed line)

correct home node through the inter-chip connection. In this

scenario, remote read requests are cached twice, once at the

L2 cache of the home GPU and another time at the L2 cache

of the GPU that sends the request. In fact, cache-remote-twice
(RTWICE) can be beneficial in RCL workloads that count

on the remote cache to minimize the NUMA effects on the

victim data structure. In these workloads, remote requests are

accessed by multiple SMs across the GPUs (i.e. inter-GPU

locality), as shown by the solid line in Figure 8. However,

workloads with intra-thread locality, caching requests twice

is a waste of cache resources if the line is only accessed by

one warp and one SM in the requesting GPU, as depicted by

the dashed line in Figure 8. Therefore, there is no need to

cache the request at the home GPU, since it may interfere

with local traffic. To this end, we propose compiler-assisted

remote request bypassing (CRB). In CRB, we use our compiler

index analysis to determine the locality type found in the

program (i.e., RCL vs ITL) and enable the RONCE bypassing

policy only in ITL workloads, since our experiments show that

applying RONCE for RCL may hurt the performance.

IV. EXPERIMENTAL METHODOLOGY

A. Simulation Methodology

To evaluate LADM we use GPGPU-Sim version 4.0 with

the recent memory system improvements from Accel-Sim

simulation framework [35]. We have modified the simulator

in order to model a hierarchical multi-GPU design with four

GPUs connected via a switch, where each GPU is composed

of four chiplets as depicted in Figure 1. The configuration

parameters used in our system are listed in Table III and are

similar to prior works [5], [51], [66]. We have implemented the

dynamically shared L2 multi-GPU cache coherence proposal

from Milic et al. [51] with cache insertion policy changes that

have been described in Section III-E.

We have implemented the NUMA-GPU analysis proposed

in the CODA system [36] and have also extended it to be aware

of the GPU’s hierarchical nature (H-CODA). We consider

the offline profiling proposed in CODA to be an orthogonal

approach to static analysis, thus we did not apply it to any

evaluated technique. In all results, H-CODA is operating on

top of the baseline cache coherence system. The original

TABLE III: Multi-GPU Configuration

#GPUs 4 GPUs, 4 chiplets per GPU

#SMs 256 SMs (64 SMs per GPU, 16 SMs per chiplet)

SM configuration Volta-like SM [35], 64 warps, 4 warp scheds, 64KB
shared memory, 64KB L1 cache, 1.4 GHZ

L2 cache 16MB (1MB per GPU chiplet), 256 banks, Dy-
namic shared L2 with remote caching [51]

Intra-Chiplet Connect 16x16 crossbar, total BW=720 GB/s

Inter-Chiplet Connect bi-directional ring, 720 GB/s per GPU

Inter-GPU Connect 4x4 crossbar, 180 GB/s per link, bi-directional

Monolithic Interconnect 256x256 crossbar, total BW=11.2 TB/s

Memory BW 180 GB/s per chiplet, 720 GB/s per GPU

CODA work did not utilize any remote caching capability in

hardware, but as shown in [51], utilizing remote caching in

NUMA-GPUs significantly improves performance scalability

on a wide range of workloads. In particular, our experiments

show that enabling remote caching improves performance of

general matrix multiplication (GEMM) operations by 4.8× on

average, reducing off-chip traffic by 4×.

B. Workload Selection and Characterization

We run LADM on a selection of 53 scalable workloads from

Rodinia 3.1 [17], CUDA SDK [57], Parboil [75], Lonestar [60]

and Pannotia [16]. In addition, we include a variety of deep

learning matrix math operations in which we exploit intra-

layer model parallelism by running GEMM operation on

multiple GPU nodes as practiced in large model training

frameworks [72]. We used the optimized sgemm from [57],

[75] as our reference implementation of GEMM and we

extract layer and matrices dimensions from several popular DL

networks [4], [25], [77]. Like prior work [5], [51], we initially

pare a broader set of 53 workloads from all the benchmarks

suites listed above and select only those workloads that have

enough parallelism to scale-up on our simulated multi-GPU

system. Of these 27 scalable benchmarks, LADM’s locality

detector places 24 into identifiable patterns and places 3 into

the unclassified category. Table IV lists the workloads used in

this study, along with their detected locality types, scheduler

decision, number of launched threadblocks, input size and L2

sector misses per kilo warp instructions (MPKI). It is worth

noting that a workload can contain more than one locality

type and kernel. In the table, we list the dominant locality

type found in the dominant kernel.

C. Hardware Validation of LASP Principles

Like prior work, the LADM system relies on co-designed

hardware and software features to maximize locality and

performance. Features like remote caching, inter-GPU cache

coherence, programmatically available hierarchical locality

cluster information, and the capability to perform fine grained

data placement among chiplets in GPUs are not present

in GPUs that are available to researchers today. However,

the compiler analysis provided by LASP allows us to test

the software based placement of thread and data blocks on

real GPUs today. We hand implemented LASP for the RCL

machine learning workloads listed in Table IV when running

on a 4-GPU cluster within an NVIDIA DGX-1 system [74].

TABLE IV: Workloads used to evaluate LADM in simulation.

Workload
Locality

Type

Scheduler

Decision

TB

Dim

Input

Size

Launched

TBs

L2

MPKI

VecAdd [57] NL Align-aware (128,1) 60 MB 10240 570

SRAD [17] NL Align-aware (16,16) 96 MB 16384 290

HS [17] NL Align-aware (16,16) 16 MB 7396 58

ScalarProd [57] NL-Xstride Align-aware (256,1) 120 MB 2048 329

BLK [57] NL-Xstride Align-aware (128,1) 80 MB 1920 291

Histo-final [75] NL-Xstride Align-aware (512,1) 36 MB 1530 268

Reduction-k6 [57] NL-Xstride Align-aware (256,1) 32 MB 2048 1056

Hotspot3D [17] NL-Ystride Align-aware (64,4) 128 MB 1024 87

CONV [57] RCL Row-sched (16,4) 120 MB 18432 66

Histo-main [75] RCL Col-sched (16,16) 36 MB 1743 201

FWT-k2 [57] RCL Col-sched (256,1) 64 MB 4096 102

SQ-GEMM [57] RCL Row-sched (16,16) 128 MB 2048 61

Alexnet-FC-2 [57], [77] RCL Col-sched (32,4) 400 MB 2048 8

VGGnet-FC-2 [57], [77] RCL Col-sched (32,4) 76 MB 8192 8

Resnet-50-FC [57], [77] RCL Col-sched (32,4) 99 MB 16384 17

LSTM-1 [4], [57] RCL Col-sched (32,4) 64 MB 4096 6

LSTM-2 [4], [57] RCL Col-sched (32,4) 32 MB 2048 27

TRA [57] RCL Row-sched (16,16) 32 MB 16384 291

PageRank [16] ITL Kernel-wide (128,1) 18 MB 23365 85

BFS-relax [60] ITL Kernel-wide (256,1) 220 MB 2048 508

SSSP [16] ITL Kernel-wide (64,1) 57 MB 4131 585

Random-loc [84] ITL Kernel-wide (256,1) 64 MB 41013 4128

Kmeans-noTex [67] ITL Kernel-wide (256,1) 60 MB 1936 158

SpMV-jds [75] ITL Kernel-wide (32,1) 30 MB 4585 640

B+tree [17] unclassified Kernel-wide (256,1) 16 MB 6000 112

LBM [75] unclassified Kernel-wide (120,1) 370 MB 18000 784

StreamCluster [75] unclassified Kernel-wide (512,1) 56 MB 1024 89

We use the cudaMemAdvise API to place the data in the

correct node, assuming a 4k page. For threadblock scheduling,

we used multi-kernel execution where we launch each kernel

on a different GPU using CUDA streams. The kernel code

was not changed and we did not employ any data replication

or reactive solutions as practiced in optimized multi-GPU li-

braries [58], [72]. If we had access to the GPU driver, we could

provide these features to the user transparently. When applying

LASP’s input aware scheduler and placement on real hard-

ware, we observed 1.9× and 1.4× performance improvement

compared to CODA and kernel-wide partitioning respectively.

This performance improvement is achieved by preserving row-

and column-locality and favoring column-binding scheduling

over the row-binding scheduling when matrix B is larger than

matrix A. Although this speedup required hand application

coding to implement the LASP placement functionality, it is an

existence proof that static analysis based locality management

can lead to significant changes in performance on real systems

today and into the future.

V. EXPERIMENTAL RESULTS

A. Simulation Results of LADM

Figure 9 and 10 show the normalized performance and

off-chip memory traffic for LADM, H-CODA [36] and a

hypothetical monolithic GPU, when running on our simulated

multi-GPU system described in Section IV-A. Compared to

H-CODA, LADM improves the performance by 1.8× and

decrease inter-GPU memory traffic by 4× on average. H-

CODA and LADM are both aware of page-alignment issues.

Thus, for the VecAdd, they both achieve the same performance.

However, LADM achieves better performance in the remaining

no-locality workloads due to its stride-aware placement. H-

CODA fails to exploit the strided accesses found in the no-

locality workloads, which causes more than 50% of memory

accesses to go off-chip. Moreover, in stencil workloads, SRAD,

HS and HotSpot3D, LADM outperforms H-CODA by 4× on

average by launching contiguous threadblocks and exploiting

adjacent locality of stencil workloads.

0
1
2
3
4
5
6
7

H-CODA LASP+RTWICE LASP+RONCE LADM (LASP+CRB) Monolithic
NL RCL ITL

N
or

m
al

ize
d

Pe
rf.

Unclassified

Fig. 9: Performance of H-CODA, LASP with RTWICE and RONCE, LADM and hypothetical monolithic GPU. The data are

normalized to H-CODA performance.

0
10
20
30
40
50
60

H-CODA LASP+RTWICE LASP+RONCE LADM (LASP+CRB)
NL RCL ITL

O
ff

-c
hi

p
Tr

af
fic

 (%
)

Unclassified

Fig. 10: Percentage of total memory traffic that goes off-node for H-CODA vs LASP vs LADM.

In column-locality and row-locality workloads, LADM out-

performs H-CODA by 2.25×. Exploiting the column and

row locality efficiently and launching the same threadblock

row or column to the same chip has a substantial effect

on performance. However, due to the round-robin page and

threadblock interleaving of H-CODA, it fails to exploit row-

and column-locality. In the machine-learning workloads, L2

remote-caching filters out off-chip traffic significantly with

only 8% remaining in H-CODA. However, because of its

row and column schedulers, along with its input size aware-

ness, LADM reduces off-chip traffic further, and outperforms

H-CODA by 17% on average. Although H-CODA’s static

analysis is agnostic to column sharing among threadblocks,

it performs well when column placement is preferable. The

matrix sizes in these machine-learning layers are aligned

such that H-CODA’s static page interleaving happens to place

shared pages on the same node.

In the ITL workloads, H-CODA fails to exploit the lo-

cality between adjacent edges in graphs represented in CSR

format. In contrast, LASP preserves locality by partitioning

the data into large chunks of consecutive pages, improving

performance by 1.7× on average. Furthermore, after applying

our RONCE policy, LASP+RONCE outperforms RTWICE by

an average of 38%. However, applying RTWICE outperforms

RONCE by 8% on average for RCL and stencil workloads.

Thus, CRB takes the best of both policies by enabling RONCE

in ITL workloads and RTWICE in other locality patterns. In

the unclassified workloads, LADM does not improve either

performance or off-chip data accesses, except for streamclus-
ter. Some workloads, like b+tree and streamcluster achieve

higher performance than the monolithic GPU due to reducing

bank conflicts and higher cache hit rate in the distributed L2

cache of the multi-GPU configuration. Similar trends were also

observed in prior work [84].

Overall, LADM outperforms H-CODA by 1.8× on av-

erage and capturing 82% of monolithic chip performance.

The reasons behind the remaining 18% performance gap

between LADM and monolithic chip are three-fold. First,

complex indices are used, as in lbm and histo, and LADM

fails to exploit their locality. Second, irregular data-dependent

accesses with no intra-thread locality are frequently generated

in many ITL graph workloads, and L2 remote-caching has

limited impact to reduce off-chip traffic. Third, the L2 cache

coherence overhead, that invalidates L2 caches between kernel

boundaries, combined with global synchronization, destroys

the inter-kernel locality that was exploited in the large L2

cache of the monolithic chip. Recent work [66] on hardware-

0

5
10

15
20
25
30

RTWICE

0

5

10

15

20

25

30

RONCE

0

20

40

60

80

100

REMOTE-LOCAL
LOCAL-REMOTE
LOCAL-LOCAL

L2
 T

ra
ff

ic
 P

er
ce

nt
. (

%
)

L2
 H

it
ra

te
 (%

)

L2
 H

it
ra

te
 (%

)

(a) random loc low reuse workload.

0

20

40

60

80

100

RTWICE

0

20

40

60

80

100

RONCE

0

20

40

60

80

100

REMOTE-LOCAL
LOCAL-REMOTE
LOCAL-LOCAL

L2
 T

ra
ff

ic
 P

er
ce

nt
. (

%
)

L2
 H

it
ra

te
 (%

)

L2
 H

it
ra

te
 (%

)

(b) SQ-GEMM high reuse workload.

Fig. 11: Case study of RONCE cache policy effectiveness on

high and low reuse workloads.

supported L2 cache coherence is orthogonal to LADM and

can be integrated to reduce the L2 coherence overhead.

B. Remote Request Bypassing Analysis

To better understand the remote request bypassing tech-

nique, we classify incoming L2 traffic into one of three

categories: (1) LOCAL-LOCAL: A memory request generated

from a local (in-node) core and serviced by local DRAM. (2)

LOCAL-REMOTE: A memory request generated from a local

(in-node) core. On a miss, the DRAM for the memory request

is on a remote node. (3) REMOTE-LOCAL: A memory

request generated from a remote node. On a miss, the DRAM

for the memory request is on the local DRAM node. The total

number of misses in LOCAL-REMOTE traffic is equal to the

total number of REMOTE-LOCAL accesses.

Figure 11a presents a case study of the random loc work-

load, where RONCE improves the performance. In ran-
dom loc, REMOTE-LOCAL traffic has a low hit-rate when

applying RTWICE. Additionally, REMOTE-LOCAL repre-

sents 45% of the L2 traffic and causes severe contention with

local accesses. Applying RONCE to bypass the REMOTE-

LOCAL accesses gives more cache resources to the other traf-

fic types and improves total L2 hit-rate by 4×. Improving the

LOCAL-REMOTE hit-rate leads to fewer off-chip accesses,

resulting in better performance. In contrast, Figure 11b plots

the results when RONCE hurts the performance in SQ-GEMM
workload. As shown in figure, REMOTE-LOCAL represents

12% of the traffic and has a relatively high hit-rate from the

inter-GPU data sharing of the shared matrix. Thus, bypassing

REMOTE-LOCAL leads to a performance degradation.

VI. RELATED WORK

A number of researchers [28], [32], [48] have explored

disintegrating multi-core CPUs into smaller chips in order

to improve manufacturing yield. In a multi-GPU context,

past work [36], [51], [84] investigated similar multi-socket

and MCM NUMA GPU designs to scale GPU performance

beyond a single socket. We have discussed their approaches

in details throughout this paper and compare their results

with LADM. Baruah et al. [7] propose hardware-software

support for page migration in multi-GPU shared-memory

systems. Milic et al. [51] propose dynamic, phase-aware

interconnect bandwidth partitioning. They also dynamically

adapt L2 caching policy to minimize NUMA effects. These

works employ reactive runtime solutions whereas we apply a

low-overhead proactive approach.

Young et al. [84] propose a DRAM-cache with opti-

mized hardware coherence for multi-GPU systems. Xiaowei

et al. [66] propose a customized L2 cache coherence protocol

for hierarchical multi-chiplet multi-GPU systems. These cache

coherence protocols are orthogonal to our work and can be ap-

plied on top of LADM for further performance improvement.

While significant work has been done to optimize weak-

scaling performance using MPI + GPUs (where each rank

controls a GPU operating on a relatively isolated partition of

data [2], [39]) or via the OpenCL runtime driver [38], [41].

However, transparently achieving strong scaling on NUMA-

GPU systems with diverse sharing patterns is still an open

problem, which we aim to address in this work.

Prior work on locality-aware threadblock scheduling in

single GPU contexts has either not used static analysis [29],

[42], [82] or performed a subset of the analysis done by

LADM [18], [43] simply because the placement of data has not

been an objective. Handling page alignment, the effect of re-

mote caching, and matching competing access patterns to data

structures are all issues that arise in the NUMA context that

are not addressed in prior work on threadblock scheduling for

cache locality. It is difficult to provide a fair quantitative com-

parison to these works, as it requires us to fill-in-the-blanks

on how the techniques would be applied to NUMA-GPUs.

Several works [1], [37], [44], [85] have provided batching

and reactive prefetching to improve UVM performance in

single GPU systems. LASP can be extended to efficiently

support oversubscribed memory by proactively placing the

next page where it is predicted to be accessed, avoiding page-

faulting overheads. Using the locality table information, the

pages that are already accessed by finished threadblocks and

will not be used again, can be evicted and replaced with the

new pages proactively.

Compiler-assisted index analysis has been used in CPUs

and GPUs to perform affine loops transformation in order

to: (1) improve locality via data tiling within a single-GPU

machine [8], [71], [83], and (2) automatically parallelize serial

code on parallel machines [9], [31], [46], [61]. However, these

works perform source-to-source transformation and do not

provide any runtime decisions on how to efficiently schedule

the threads. Furthermore, prior work on GPU static analysis

does not exploit all the locality patterns identified by LADM.

In this work, we extend single thread index analysis to be

threadblock-centric for the NUMA-GPU domain.

It is worth mentioning that, with modifications to account

for threadblock motion and inter-thread sharing, a polyhedral

framework [10], [24], [71] could be used in place of LADM’s

index analysis. However, we believe that LADM‘s simpler and

effective index-based analysis increases the likelihood it will

be adopted in contemporary GPU compilers (e.g. NVCC [54]).

Either way, the choice of compiler infrastructure used is

orthogonal to the datablock analysis proposed in this paper.

Data placement has been a focus of CPU research in

OpenMP NUMA systems. Solutions include adding new

OpenMP language primitives which are explicitly used by

the programmer [14], [21], [49], [50], compiler-assited page

migration [47], [64] or reactively changing the virtual page

size [23]. Although thread scheduling is a concern in CPU-

NUMA systems, the focus is largely on workload balancing

via advanced work stealing algorithms [59] or avoiding cache

thrashing [52], but not to ensure memory page locality. In

this work, we coordinate both data placement and thread

scheduling to exploit various locality patterns of massively

multithreaded multi-GPU systems.

VII. CONCLUSION

Thanks to high levels of inherent parallelism, many GPU

workloads will be able to strongly scale performance, if large

enough GPUs can be built. However, due to the physical

limitations of chip and interconnect technologies, GPUs built

with enough resources to leverage this abundant parallelism

will have to overcome significant NUMA effects. This work

describes a locality-aware data management system designed

to transparently overcome the NUMA effects of future hier-

archical GPUs. By combining static analysis with hardware

data placement, thread scheduling, and cache insertion policies

LADM decreases inter-GPU memory traffic by 4×, improving

system performance by 1.8× across a range of workloads

with varying locality. LADM demonstrates that intelligent

coordination of threadblock scheduling and data placement can

offset the need for expensive GPU interconnect technologies

in the future.

ACKNOWLEDGMENTS

This work was supported, in part, by NSF CCF #1910924

and Sandia National Labs 2.

REFERENCES

[1] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch,
“Unlocking Bandwidth for GPUs in CC-NUMA Systems,” in IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 354–365.

2Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

[2] A. M. Aji, L. S. Panwar, F. Ji, M. Chabbi, K. Murthy, P. Balaji, K. R.
Bisset, J. Dinan, W.-c. Feng, J. Mellor-Crummey et al., “On the Efficacy
of GPU-Integrated MPI for Scientific Applications,” in Proceedings of
the 22nd international symposium on High-performance parallel and
distributed computing, 2013, pp. 191–202.

[3] R. Allen and K. Kennedy, Optimizing compilers for modern architec-
tures: a dependence-based approach. Morgan Kaufmann San Francisco,
2002, vol. 289.

[4] J. Appleyard, T. Kocisky, and P. Blunsom, “Optimizing Performance of
Recurrent Neural Networks on GPUs,” arXiv preprint arXiv:1604.01946,
2016.

[5] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU: Multi-Chip-Module
GPUs for Continued Performance Scalability,” in Proceedings of the
44th Annual International Symposium on Computer Architecture (ISCA),
2017, pp. 320–332.

[6] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding
the Future of Energy Efficiency in Multi-Module GPUs,” in IEEE 25th
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 519–532.

[7] T. Baruah, Y. Sun, A. T. Diner, S. A. Mojumder, J. L. Abelln, Y. Ukidave,
A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Griffin: Hardware-Software
Support for Efficient Page Migration in Multi-GPU Systems,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 596–609.

[8] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “A Compiler Framework for Optimiza-
tion of Affine Loop Nests for GPGPUs,” in Proceedings of the 22nd
annual international conference on Supercomputing, 2008, pp. 225–234.

[9] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-
CUDA Code Generation for Affine Programs,” in International Confer-
ence on Compiler Construction, 2010, pp. 244–263.

[10] C. Bastoul, “Code Generation in the Polyhedral Model Is Easier Than
You Think,” in Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2004, pp.
7–16.

[11] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali, “A Case for
NUMA-aware Contention Management on Multicore Systems,” in Pro-
ceedings of the 19th international conference on Parallel architectures
and compilation techniques (PACT), 2010, pp. 557–558.

[12] W. Bolosky, R. Fitzgerald, and M. Scott, “Simple But Effective Tech-
niques for NUMA Memory Management,” ACM SIGOPS Operating
Systems Review, pp. 19–31, 1989.

[13] P. Bright, “Moore’s law really is dead this time,” https://arstechnica.com/
information-technology/2016/02/moores-law-really-is-dead-this-time/,
2016.

[14] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and R. Namyst,
“ForestGOMP: an Efficient OpenMP Environment for NUMA Archi-
tectures,” International Journal of Parallel Programming, pp. 418–439,
2010.

[15] J. Cabezas, L. Vilanova, I. Gelado, T. B. Jablin, N. Navarro, and W.-
m. W. Hwu, “Automatic Parallelization of Kernels in Shared-Memory
Multi-GPU Nodes,” in Proceedings of the 29th ACM on International
Conference on Supercomputing, 2015, pp. 3–13.

[16] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding Irregular GPGPU Graph Applications,” in IEEE Inter-
national Symposium on Workload Characterization (IISWC), 2013, pp.
185–195.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing,” in IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[18] L.-J. Chen, H.-Y. Cheng, P.-H. Wang, and C.-L. Yang, “Improving
GPGPU Performance via Cache Locality Aware Thread Block Schedul-
ing,” IEEE Computer Architecture Letters, pp. 127–131, 2017.

[19] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-Core Mapping Policies to Reduce Memory Interference
in Multi-Core Systems,” in IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), 2013, pp. 107–118.

[20] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, V. Quema,
and M. Roth, “Traffic Management: A Holistic Approach to Memory
Placement on NUMA Systems,” in Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013, p. 381394.

[21] M. Diener, E. H. Cruz, M. A. Alves, P. O. Navaux, and I. Koren,
“Affinity-Based Thread and Data Mapping in Shared Memory Systems,”
ACM Computing Surveys (CSUR), 2017.

[22] B. Falsafi and D. A. Wood, “Reactive NUMA: A Design for Unifying
S-COMA and CC-MAMA,” in Proceedings of the 24th annual interna-
tional symposium on Computer architecture (ISCA), 1997, pp. 229–240.

[23] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and
V. Quéma, “Large Pages May Be Harmful on NUMA Systems,” in
Proceedings of 2014 USENIX Annual Technical Conference (USENIX
ATC), 2014, pp. 231–242.

[24] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly: Performing
Polyhedral Optimizations on a Low-Level Intermediate Representation,”
Parallel Processing Letters, pp. 1–27, 2012.

[25] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” arXiv preprint arXiv:1510.00149, 2015.

[26] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-Optimal Block Placement and Replication in Distributed
Caches,” in Proceedings of the 36th annual international symposium on
Computer architecture (ISCA), 2009, pp. 184–195.

[27] Intel, “Intel EMIB,” https://www.intel.com/content/www/us/en/foundry/
emib.html/, 2016.

[28] N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh, “NoC Architectures for
Silicon Interposer Systems: Why Pay for more Wires when you Can
Get them (from your interposer) for Free?” in Proceedings of the 47th
Annual International Symposium on Microarchitecture (MICRO), 2014,
pp. 458–470.

[29] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative
Thread Array Aware Scheduling Techniques for Improving GPGPU
Performance,” in Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2013, pp. 395–406.

[30] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated Scheduling and Prefetching for GPGPUs,”
in Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (ISCA), 2013, pp. 332–343.

[31] J. Juega, J. Gomez, C. Tenllado, S. Verdoolaege, A. Cohen, and
F. Catthoor, “Evaluation of state-of-the-art polyhedral tools for automatic
code generation on GPUs,” XXIII Jornadas de Paralelismo, Univ.
Complutense de Madrid, 2012.

[32] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling Interposer-based
Disintegration of Multi-core Processors,” in 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2015, pp. 546–
558.

[33] ——, “Exploiting Interposer Technologies to Disintegrate and Reinte-
grate Multicore Processors,” IEEE Micro, pp. 84–93, 2016.

[34] O. Kayran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither More Nor
Less: Optimizing Thread-level Parallelism for GPGPUs,” in Proceedings
of the 22nd International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2013, pp. 157–166.

[35] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,”
in ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473–486.

[36] H. Kim, R. Hadidi, L. Nai, H. Kim, N. Jayasena, Y. Eckert, O. Kayiran,
and G. Loh, “CODA: Enabling Co-location of Computation and Data for
Multiple GPU Systems,” ACM Transactions on Architecture and Code
Optimization (TACO), pp. 1–23, 2018.

[37] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, “Batch-Aware Unified
Memory Management in GPUs for Irregular Workloads,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2020,
pp. 1357–1370.

[38] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a Single Compute
Device Image in OpenCL for Multiple GPUs,” in Proceedings of the 16th
ACM symposium on Principles and practice of parallel programming
(PPOPP), 2011, pp. 277–288.

[39] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold,
J. E. Stone, J. C. Phillips, and W.-m. Hwu, “GPU Clusters for High-
Performance Computing,” in 2009 IEEE International Conference on
Cluster Computing and Workshops, 2009, pp. 1–8.

[40] D. Kirk and W. Wen-mei, Programming Massively Parallel Processors:
A Hands-on Approach. Morgan Kaufmann, 2010.

[41] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Transparent CPU-GPU
Collaboration for Data-Parallel Kernels on Heterogeneous Systems,” in
Proceedings of the 22nd international conference on Parallel architec-
tures and compilation techniques (PACT), 2013, pp. 245–256.

[42] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU Resource Utilization Through Alternative Thread
Block Scheduling,” in 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), 2014, pp. 260–271.

[43] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal,
“Locality-Aware CTA Clustering for Modern GPUs,” in Proceedings
of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017, pp.
297–311.

[44] C. Li, R. Ausavarungnirun, C. J. Rossbach, Y. Zhang, O. Mutlu, Y. Guo,
and J. Yang, “A Framework for Memory Oversubscription Management
in Graphics Processing Units,” in Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019, pp. 49–63.

[45] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik, “Locality and Loop
Scheduling on NUMA Multiprocessors,” in International Conference
on Parallel Processing (ICPP), 1993, pp. 140–147.

[46] W. Li, “Compiling for NUMA Parallel Machines,” Cornell University,
Tech. Rep., 1994.

[47] Y. Li, R. Melhem, A. Abousamra, and A. K. Jones, “Compiler-assisted
Data Distribution for Chip Multiprocessors,” in Proceedings of the 19th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2010, pp. 501–512.

[48] G. H. Loh, N. E. Jerger, A. Kannan, and Y. Eckert, “Interconnect-
Memory Challenges for Multi-chip, Silicon Interposer Systems,” in
Proceedings of the 2015 International Symposium on Memory Systems
(MEMSYS), 2015, pp. 3–10.

[49] Z. Majo and T. R. Gross, “Matching Memory Access Patterns and
Data Placement for NUMA Systems,” in Proceedings of the Tenth
International Symposium on Code Generation and Optimization (CGO),
2012, pp. 230–241.

[50] C. McCurdy and J. Vetter, “Memphis: Finding and Fixing NUMA-
related Performance Problems on Multi-core Platforms,” in 2010 IEEE
International Symposium on Performance Analysis of Systems & Soft-
ware (ISPASS), 2010, pp. 87–96.

[51] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez, and D. Nellans, “Beyond the Socket: NUMA-aware GPUs,”
in Proceedings of the 50th Annual International Symposium on Microar-
chitecture (MICRO), 2017, pp. 123–135.

[52] A. Muddukrishna, P. A. Jonsson, and M. Brorsson, “Locality-Aware Task
Scheduling and Data Distribution for OpenMP Programs on NUMA
Systems and Manycore Processors,” Scientific Programming, 2015.

[53] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “AMD
Chiplet Architecture for High-Performance Server and Desktop Prod-
ucts,” in IEEE International Solid- State Circuits Conference - (ISSCC),
2020, pp. 44–45.

[54] NVIDIA, “NVCC,” https://docs.nvidia.com/cuda/cuda-compiler-driver-
nvcc/index.html.

[55] ——, “NVIDIA NVLink: High Speed GPU Interconnect,” https://www.
nvidia.com/en-us/design-visualization/nvlink-bridges/.

[56] ——, “NVIDIA NVSWITCH,” https://images.nvidia.com/content/pdf/
nvswitch-technical-overview.pdf.

[57] ——, “CUDA C/C++ SDK Code Samples,” http://developer.nvidia.com/
cuda-cc-sdk-code-samples, 2011.

[58] ——, “cuBLASXt,” https://docs.nvidia.com/cuda/cublas/index.html#
using-the-cublasXt-api, 2020.

[59] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and
J. F. Prins, “OpenMP task scheduling strategies for multicore NUMA
systems,” The International Journal of High Performance Computing
Applications, pp. 110–124, 2012.

[60] M. A. O’Neil and M. Burtscher, “Microarchitectural Performance Char-
acterization of Irregular GPU Kernels,” in IEEE International Sympo-
sium on Workload Characterization (IISWC), 2014, pp. 130–139.

[61] Y. Paek and D. A. Padua, “Experimental Study of Compiler Techniques
for NUMA Machines,” in Proceedings of the First Merged International
Parallel Processing Symposium and Symposium on Parallel and Dis-
tributed Processing, 1998, pp. 187–193.

[62] S. Pal, D. Petrisko, A. A. Bajwa, P. Gupta, S. S. Iyer, and R. Kumar, “A
Case for Packageless Processors,” in IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2018, pp. 466–479.

[63] S. Pal, D. Petrisko, M. Tomei, P. Gupta, S. S. Iyer, and R. Kumar,
“Architecting Waferscale Processors-A GPU Case Study,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 250–263.

[64] G. Piccoli, H. N. Santos, R. E. Rodrigues, C. Pousa, E. Borin, and
F. M. Quintão Pereira, “Compiler Support for Selective Page Migration
in NUMA Architectures,” in Proceedings of the 23rd International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2014, pp. 369–380.

[65] J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G.
Tell, J. M. Wilson, and C. T. Gray, “A 0.54 pJ/b 20 Gb/s Ground-
Referenced Single-Ended Short-Reach Serial Link in 28 nm CMOS
for Advanced Packaging Applications,” IEEE Journal of Solid-State
Circuits, pp. 3206–3218, 2013.

[66] X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans,
“HMG: Extending Cache Coherence Protocols Across Modern Hierar-
chical Multi-GPU Systems,” in IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020, pp. 582–595.

[67] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2012, pp. 72–
83.

[68] ——, “Divergence-aware Warp Scheduling,” in Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2013, pp. 99–110.

[69] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin, “An Argument
for Simple COMA,” in First IEEE Symposium on High-Performance
Computer Architecture (HPCA), 1995, pp. 276–285.

[70] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina et al., “Simba: Scaling
Deep-Learning Inference with Multi-Chip-Module-Based Architecture,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2019, pp. 14–27.

[71] J. Shirako, A. Hayashi, and V. Sarkar, “Optimized Two-Level Paralleliza-
tion for GPU Accelerators using the Polyhedral Model,” in Proceedings
of the 26th International Conference on Compiler Construction, 2017,
pp. 22–33.

[72] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using Model Parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[73] T. Simonite, “Moores Law Is Dead. Now What?” https://www.
technologyreview.com/s/601441/moores-law-is-dead-now-what/, 2016.

[74] B. Solca, “NVIDIA DGX-2 is the world largest gpu.”
https://www.notebookcheck.net/Nvidia-DGX-2-is-the-world-s-largest-
GPU.292930.0.html, 2018.

[75] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A Revised Bench-
mark Suite for Scientific and Commercial Throughput Computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[76] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao et al., “MGPUSim: Enabling
Multi-GPU Performance Modeling and Optimization,” in Proceedings
of the 46th International Symposium on Computer Architecture (ISCA),
2019, pp. 197–209.

[77] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the
IEEE, pp. 2295–2329, 2017.

[78] D. Tam, R. Azimi, and M. Stumm, “Thread Clustering: Sharing-Aware
Scheduling on SMP-CMP-SMT Multiprocessors,” in ACM SIGOPS
Operating Systems Review, 2007, pp. 47–58.

[79] T. Vijayaraghavany, Y. Eckert, G. H. Loh, M. J. Schulte, M. Igna-
towski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang,
A. Karunanithi et al., “Design and Analysis of an APU for Exascale
Computing,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 85–96.

[80] N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu,
“The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express
Data Locality In GPUs,” in 45th Annual International Symposium on
Computer Architecture (ISCA), 2018, pp. 829–842.

[81] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero et al., “Scaling
the Power Wall: A Path to Exascale,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2014, pp. 830–841.

[82] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang, “Coordinated Static
and Dynamic Cache Bypassing for GPUs,” in IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), 2015,
pp. 76–88.

[83] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU Compiler for
Memory Optimization and Parallelism Management,” in InProceedings
of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2010, pp. 86–97.

[84] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining HW/SW Mechanisms to Improve NUMA Performance of
Multi-GPU Systems,” in Proceedings of the 51th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp. 339–
351.

[85] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keck-
ler, “Towards High Performance Paged Memory for GPUs,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2016, pp. 345–357.

