
Journal of Parallel and Distributed Computing 127 (2019) 65–88

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A survey of architectural approaches for improving GPGPU
performance, programmability and heterogeneity
Mahmoud Khairy a,b,∗, Amr G. Wassal a, Mohamed Zahran c

a Computer Engineering Department, Cairo University, Egypt
b Electrical and Computer Engineering Department, Purdue University, IN, USA
c Computer Science Department, New York University, NY, USA

h i g h l i g h t s

• Recent years have been witnessing the emergence of using GPUs for general purpose computing due to their efficient performance/power ratio.
• Various issues need be addressed in order to rely on GPGPUs as a compelling general purpose accelerator for the next power-limited big-data era.
• Control Divergence, Memory Bandwidth and Limited Parallelism are the three main bottlenecks that limit GPGPU performance.
• Enhancing GPGPU programmability is an important feature for future GPUs to simplify GPGPU programming.
• The aim of this paper is to provide a survey of architectural advances to improve performance and programmability of GPUs.

a r t i c l e i n f o

Article history:
Received 16 February 2017
Received in revised form 1 November 2018
Accepted 22 November 2018
Available online 14 January 2019

Keywords:
GPGPU
Memory systems
Control divergence
Heterogeneous architecture

a b s t r a c t

With the skyrocketing advances of process technology, the increased need to process huge amount of
data, and the pivotal need for power efficiency, the usage of Graphics Processing Units (GPUs) for General
Purpose Computing becomes a trend and natural. GPUs have high computational power and excellent
performance per watt, for data parallel applications, relative to traditional multicore processors. GPUs
appear as discrete or embedded with Central Processing Units (CPUs), leading to a scheme of hetero-
geneous computing. Heterogeneous computing brings as many challenges as it brings opportunities. To
get the most of such systems, we need to guarantee high GPU utilization, deal with irregular control
flow of some workloads, and struggle with far-friendly-programming models. The aim of this paper is to
provide a survey about GPUs from two perspectives: (1) architectural advances to improve performance
and programmability and (2) advances to enhance CPU–GPU integration in heterogeneous systems. This
will help researchers see the opportunities and challenges of using GPUs for general purpose computing,
especially in the era of big data and the continuous need of high-performance computing.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Graphics Processing Units (GPUs) have been used for several
years as a fixed-function hardware accelerator for 3D Graph-
ics applications. Earlier generations of GPUs were designed to
implement the conventional 3D rendering pipeline [103,143].
However, the high computational power, the GPUs can achieve
compared with traditional multicore Central Processor Units
(CPUs), encourage the developers to use GPUs for compute-
intensive non-graphics workloads [222]. At that time, the term
General Purpose computing using Graphics Processing Units
(GPGPU) has emerged widely. The programmers used graphics

∗ Corresponding author at: Computer EngineeringDepartment, CairoUniversity,
Egypt.

E-mail addresses: makhairy@eng.cu.edu.eg (M. Khairy), wassal@eng.cu.edu.eg
(A.G. Wassal), mzahran@cs.nyu.edu (M. Zahran).

APIs (e.g. Direct3D or OpenGL) to access shader cores. The pro-
grammers had to map program data appropriately to the avail-
able shader buffers and manage the data accurately through the
graphics pipeline. Obviously, using graphics APIs for non-graphics
general purpose programming was a very difficult task. How-
ever, with some heroic efforts, a considerable speedups were
achieved [173]. This trend prompted the GPUs vendor to build a
more programmable GPU architecture, known as unified shader
architecture (e.g. NVIDIA’s Tesla [144], NVIDIA’s Fermi [161] and
AMD Evegreen [13]) and release more-friendly high level ab-
straction APIs to facilitate GPGPU programming (e.g. NVIDIA’s
CUDA [166], AMD’s CTM [71] and OpenCL [102]). Since then, a new
era of GPGPU architecture and programming was unleashed and is
still evolving to this day [38,99,161].

GPU acceleration has beenwidely adopted in high-performance
computing (HPC) applications, such as computer vision, graph

https://doi.org/10.1016/j.jpdc.2018.11.012
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.11.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.11.012&domain=pdf
mailto:makhairy@eng.cu.edu.eg
mailto:wassal@eng.cu.edu.eg
mailto:mzahran@cs.nyu.edu
https://doi.org/10.1016/j.jpdc.2018.11.012


66 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

Fig. 1. Number of research papers related to GPGPU published during the last decade at the top-tier computer architecture conferences (MICRO, ISCA, ASPLOS, and HPCA).

processing, biomedical, financial analysis, and physical simula-
tion [80,81]. This is due to the fact that GPUs are able to achieve
tremendous computational power and efficient performance-per-
watt compared to conventional multicore CPUs. Thus, there is no
wonder that a large portion of supercomputers found in Top500 list
rely onGPUs [224].Moreover, the scope of applications that benefit
from GPU acceleration has been expanded rapidly during the last
decade to include server and cloud workloads [66,74], database
processing [24,248] and deep machine learning [35]. However,
because GPUs were initially designed to execute regular streaming
applications, like graphics workloads, they are still not effective
to accelerate some emerging data intensive workloads, due to
the lack of irregular execution support, the memory bandwidth
bottleneck and the GPGPU programming complexity.

In order to improve the performance, energy efficiency and
programmability of GPUs for emerging data intensive workloads,
researchers have been diligently working on enhancing GPU archi-
tecture for general purpose computing. Fig. 1 depicts the number
of research papers related to GPGPUs that were published during
the last decade at the top-tier computer architecture conferences.
As shown in figure, there has been a growing interest in improving
GPGPUs architecture during the last five years. Up to 28 and 29
research papers were published in 2016 and 2017 respectively
which represents nearly 16% of the total number of papers.

Fig. 2 characterizes and divides these works into different
categories. As we can see, there has been a noticeable interest in
improving the performance of GPGPUs by mitigating the impact
of control flow divergence [46,48,194,216,221], alleviating on-chip
resource contention [97,160,195,274] and improving memory hi-
erarchy performance [22,111,126,193,221,269]. Since GPGPU pro-
gramming is complex, researchers worked on enhancing the GPU
programmability by equipping GPUs with architectural support
to improve data sharing and synchronization (e.g. cache coher-
ence [209] and transactional memory [68,208,213]). They also
investigated new techniques to boost GPGPU concurrency and
multitasking [6,218,255], leading to an increase in available thread
level parallelism (TLP) and efficiently utilizing the execution re-
sources. Besides, to amortize the increasing chip area, there have
been some efforts to integrate CPU with GPU on the same die
chip [11,82,162]. Such designs need to be carefully studied be-
cause GPUs execute hundreds of threads that can monopolize
on-chip shared resources (e.g. memory controller [17] , on-chip
network [128] and last level cache [123]) and this leads CPU
applications to be starved. To address this problem, researches
have worked on efficiently and fairly managing shared resources
between CPU and GPU. Furthermore, they worked on augment-
ing CPU–GPU architecture with more powerful communication
mechanisms and fine-grained data sharing (e.g. unified virtual
memory space [183] and CPU–GPU cache coherence [184]). In
addition to that, some works have also investigated novel tech-
niques to improve energy and power efficiency [156], define accu-
rate model for performance and power [77,133], create software

frameworks to ease GPGPU programming, develop fault tolerance
capability and improve the 3D rendering pipeline for graphics
workloads. Recently, researchers started looking into novel ar-
chitecture techniques to build large scalable GPUs that are easy
to manufacture [16,154], investigating security breaches on mod-
ern GPU [89,159] as well as building software frameworks and
designing novel hardware to customize GPUs for deep learning
acceleration [75,210].

In this paper, we present a survey of research works that aim to
improve GPGPU performance, programmability and heterogeneity
(i.e., CPU–GPU integration). Further, we introduce a classification
of these works on the basis of their technical approach and key
idea. Since it is not possible to review all the research works
that are related to GPGPUs, we mainly focus on the following
areas to limit the scope of the survey. We only discuss techniques
proposed for improving GPGPU performance including (1) control
flow divergence mitigation, (2) alleviating resource contention
and efficient utilization of memory bandwidth across the entire
memory hierarchy, including caches, interconnection and main
memory, (3) increasing the available parallelism and concurrency,
and (4) improving pipeline execution and exploiting scalarization
opportunities.We also include architectural-based techniques that
aim to improve GPGPU programmability, e.g. cache coherence,
memory consistency, transactional memory, synchronization, de-
bugging and memory management. We also provide a survey on
research works which aim to enhance the on-chip integration of
CPU–GPU heterogeneous architecture, including on-chip shared
resource management and improving CPU–GPU programmability.
While our main focus in this work is to discuss micro-architectural
approaches, we may also refer to some prominent software- and
compiler-based techniques related to our scope. On the other hand,
we do not include studies related to performance and energy
modeling, employing emerging memory technologies (e.g. non-
volatile memory), register file, fault tolerance, works that only
focus on improving GPU energy and power efficiency or CPU–GPU
power management.1 Additionally, we only adopt works that are
related to many-thread GPU-like accelerator, while works that are
concerned with other types of accelerators, such as many-core
accelerator [62,201], are not covered in this survey. Further, we
only focus on ideas related to general purpose computing, whereas
techniques which aim to improve GPUs for graphics workloads are
out of scope in this work.

The remainder of this paper is organized as follows, Section 2
presents a brief overview on GPGPUs programming model and
architecture, Sections 3–5 review the techniques on improving
GPGPU performance by alleviating control flow divergence, ef-
ficiently utilizing memory bandwidth and increasing parallelism

1 Formore information about works that aim to improve GPU power and energy
efficiency, we refer the reader to [156].



M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 67

Fig. 2. Characterization of research papers related to GPGPU shown in Fig. 1.

respectively, Section 6 reviews the studies on enhancing GPGPU
programmability, Section 7 reviews the works that aim to enhance
CPU–GPU integration, Section 8 suggests future research directions
and Section 9 concludes.

2. Background

In this section,wegive a brief overviewonGPGPUprogramming
model and architecture. For more details, we kindly refer the
reader to [70,114,166].

2.1. GPGPU programming model

The CUDA [166] or OpenCL [102] programming model allows
the programmers to express the available data level parallelism in
terms of fine-grain scalar threads. There are two important aspects
of GPGPU programming model. First. it follows a CPU off-loading
model, which means that the programmer is responsible for mov-
ing the data from CPUmemory to GPUmemory, andwhen the GPU
program execution is finished, he has to move the result from GPU
memory back to CPU memory. Second, the GPGPU programming
model is a Single Program Multiple Data (SPMD) model, which
means that all threads run the same program, however each thread
can be at different states (i.e., execute different instructions within
the same program).

A typical GPGPU application consists of multiple kernels (or
grids). Each kernel contains a group of 2- or 3-dimensional of
thread blocks (a.k.a. cooperative thread array or CTA) and each
threadblock is composedof 3-dimensional fine-grain scalar threads.
Threads within the same thread block communicate with each
other through a shared on-chip scratchpad memory and synchro-
nization primitives.

During run-time, each of consecutive 32 threads2 is grouped to-
gether to formulate a warp (a.k.a. wavefront). Warps are executed
in a Single Instruction Multiple-Threads (SIMT) model. In SIMT
executionmodel: (1) all threads within the samewarp execute the
same program counter (PC), i.e. execute in a lock-step, to amortize
instruction fetch and decode cost efficiency. (2) Threads within the
samewarp are allowed to follow different control flow paths. (3) A
longmemory latency is tolerated by a fast warp context switching.

2 NVIDIA’s architecture warp is composed of 32 threads while AMD’s architec-
ture wavefront is composed of 64 threads.

2.2. GPGPU architecture

A typical GPGPU,3 shown in Fig. 3, is composed of multiple
GPU cores, named Streaming Multiprocessors (SMs), and a group
of memory partitions. Each SM has its own register file, private L1
data cache, constant cache, read-only texture cache and software-
managed scratchpad memory, named shared memory. They also
contain a group of execution units, such as single instruction mul-
tiple data units (SIMDs), special function units (SFUs) and memory
units. Each memory partition is attached with a L2 cache slice and
a GDDR5 memory controller (or High Bandwidth memory in the
modern GPUs [12]). The memory partitions and the SMs are con-
nected together via a high-bandwidth interconnection network.

The warps in GPGPUs are executed on a two-level hierarchi-
cal scheduling (thread block scheduling and warp scheduling). A
thread block scheduler, as shown in Fig. 3, distributes the thread
blocks among SMs in a load-balanced fashion [23]. Thread block
is dispatched to a SM only if the required resources of the thread
block are available on this SM (e.g. register file, shared memory,
warp scheduler entries, etc.). Thread blocks are subdivided by
hardware into warps (each warp is composed of a consecutive 32
threads). Each SM contains a number of warp schedulers. Thewarp
scheduler employs a specific policy to schedule the availablewarps
over the execution units.

Each SM contains a memory-coalescing unit that attempts to
coalesce memory requests generated by threads within each warp
into the fewest possible cache line-sizedmemory requests. Amem-
ory divergence occurs when threads in the same warp access dif-
ferent regions of memory in the same SIMT instruction and thus
the memory-coalescing unit fails to reduce memory requests. In
the worst case scenario, up to 32 independent memory transac-
tions (corresponding to 32 threads per warp) can be generated
from a single memory instruction. In addition, as stated earlier,
GPGPU hardware implementations employ SIMT execution model
in which only one instruction is fetched for all the threads within
the same warp. However, a control flow divergence occurs when
threads in the same warp execute different control flow paths due
to branch/loop statement. In this case, GPGPU requires a mecha-
nism to allow each thread to follow its own thread of control. Typ-
ically, GPGPUs handle control flow divergence and re-convergence
with a hardware-based stack reconvergence [48]. In stack-based

3 NVIDIA and AMD have different terminology to describe GPU architecture. In
this paper, we use NVIDIA’s terminology. For more information on different GPU
terminology used by other vendors, see Section 2.4.



68 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

Fig. 3. A Typical GPGPU Architecture.

Table 1
CPU vs GPU design philosophy.

CPU GPGPU

Architecture design
philosophy

Latency-oriented
architecture

Throughput-oriented
architecture

Microarchitecture
attributes

Large caches, Sophisticated
control, Branch prediction ,
Data forwarding

Small caches, simple control,
No branch prediction, No
data forwarding

Threads per core 2–4 Threads per core 1024–2048 threads (32–64
warps) per core

Hiding memory
latency strategy

Hide memory latency
through large Cache
Hierarchy

Hide memory latency
through massive
multithreading
zero-overhead switching

Preferable code
execution

Sequential Code (if
statement, function calling,
etc.)

Data-parallel Code (loops,
streams, etc.)

scheme, the execution of divergent paths is serialized (i.e., exe-
cuting the taken path, then the non-taken path) and it ensures
reconvergence occurs at or before the immediate postdominator
(IPDOM) of the divergent branch. More details and examples of
PDOM stack-based reconvergence can be found in [48]. To achieve
the maximum performance of the underlying GPGPU hardware,
the running program should minimize the occurrence of control
flow divergence and memory divergence [114,166].

2.3. GPU vs CPU design philosophy

CPU and GPU are two different architectures. Each has its own
design philosophy. No one is better than other, since each was
designed to execute a specific task in an efficient manner. Table 1
summarizes the differences between both architectures. CPUs are
well designed to execute sequential code. They are called latency-
oriented architecture, because they are optimized to tolerate long
latency instruction and memory access. They devote more tran-
sistor area for sophisticated control (e.g. branch predication and
data forwarding) to tolerate long latency instruction. They con-
tain larger last level caches (up to 8 MB in current CPUs) in or-
der to hide long memory latency. On the other hand, GPUs are
throughput-oriented architecture. They are well designed to exe-
cute some parts of applications that contain data-level parallelism
(e.g. for/while loops) which requires high arithmetic intensity and

large memory throughput. GPUs devote most of the chip area
for processing elements that are deeply pipelined to increase the
arithmetic throughput. They employ a simpler logic control and
small caches. GPGPUs rely on massive number of threads/warps
that interleaved with each other with fast context switching in
order to hide long memory latency.

Table 2 compares between recent generation of high-end Intel
CPU (Skylake core i7 [83]) and NVIDIA Pascal GPU (TitanX [167])
in terms of threads per core, computational intensity (GFLOPs),
memory bandwidth (GB/sec) and cache hierarchy size. As shown
in table, GPUs achieve a high computational power and mem-
ory bandwidth compared to CPUs. The recent NVIDIA Pascal TI-
TANX outperforms Intel Skylake core i7 in terms of GFLOPs and
memory bandwidth by 20X and 10X respectively. However, as
we stated earlier, this does not mean that GPUs are better than
CPUs. GPUs are more efficient when it comes to data-parallel
high-computational code (e.g. loops). On the other hand, CPUs are
more powerful when it comes to sequential latency-sensitive code
(e.g. heavily sequential branches). To take advantage of both CPUs
and GPUs, and efficiently utilize the available hardware resources,
programmers need to execute the serial parts of their code on CPUs
and launch data-parallel parts on GPUs. By this way, they are able
to achieve themost out of the underlying hardware. CPU–GPU pro-
gramming is well known as heterogeneous computing [114,166].



M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 69

Table 2
Recent CPU vs GPU.

Threads per
core

GFLOPS (FMA) Memory BW
GB/sec

L1 cache Last level cache TDP (watts)

Intel Skylake Core
i7 [83]

2 512
@4 GHZ

50 64 KB 8 MB 90

NVIDIA TITANX
[167]

2048 10,000
@1.4 GHZ

480 48 KB 4 MB 250

Table 3
GPU terminology.
Literature [70] NVIDIA [164,165] AMD [10] Intel [226]

Thread Block
Scheduler (CTA
Scheduler)

Giga-thread Engine Ultra-threaded
dispatcher

Thread Dispatcher

Multi-threaded
SIMD Core

Streaming
Multiprocessor (SM)

Compute Unit Compute Slice

Hardware SIMDs
per core

n x 32-wide Vector
SIMD

n x 16-wide Vector
SIMD + Scalar Unit

n Execution Units
(EU), each EU has 2
x 4-wide Vector
SIMD

SIMD lane Stream Processor (or
CUDA core)

Stream Core SIMD lane

Thread Execution
model

Single Instruction
Multiple Thread
(SIMT)

SIMD + Scalar SIMD

SIMD Thread Warp Wavefront EU Thread

SIMD Thread
Scheduler

Warp Scheduler Wavefront
Scheduler

Thread Scheduler

SIMD Thread width
(warp width)

=32 =64 variable (=8, 16,
32)

Local Scratchpad
Memory

Shared Memory Local Data Share
(LDS)

Shared Local
Memory (SLM)

Microarchitecture Tesla, Fermi, Kepler,
Maxwell, Pascal, Volta

Terascale (VLIW),
Graphics Core Next
(GCN)

Ivy Bridge, Haswell,
Skylake

2.4. GPU terminology

GPUs from different vendors have very similar architectures,
like the one shown in Fig. 3. Yet, GPU architecture terminology
is complex to be tracked. This is due to the fact that each GPU
vendor has its own technical terminology and design parameters.
For instance, GPU core is named as Streaming Multiprocessor in
NVIDIA terminology, while it is named Compute unit in AMD
terminology. Further, what NVIDIA defines asWarp, is the same as
AMD’s Wavefront. Also, there are some variances in the architec-
ture design parameters. For example, NVIDIA employs 32 threads
per warp, whereas AMD employs 64 threads per wavefront. To ad-
dress this issue, Table 3 summarizes the different GPU terminology
and design parameters used by the main GPU vendors.

3. Control flow divergence

Control flow divergence occurs when threads in the same warp
execute different control flow paths. Control flow divergence
causes significant performance reduction for irregular workloads.
The drawbacks of control divergence and irregular execution are
four-fold. First, GPUs employ PDOM stack-based mechanism that
serializes the execution of divergent paths. This serialization of
divergent paths reduces the available thread level parallelism
(i.e., the number of active warps at a time) which limits the ability
of GPUs to hide long memory instruction latency. Second, control
divergence limits the number of active threads in the running
warps. As a result, SIMD execution units are not efficiently uti-
lized when a diverged warp is executed. It has been shown that
highly-divergent applications cause SIMD execution units to be

underutilized for 50% of the time [48]. Third, control divergence
may also lead memory divergence wherein threads in the same
warp access different regions of memory and thus the memory-
coalescing unit fails to reduce memory requests. Memory diver-
gence causes huge pressure on memory resources and leads long
memory latency and performance degradation [195]. Fourth, irreg-
ular applications tend to cause workload imbalance in such a way
that assignedwork (i.e., active threads per CTAs) to someGPU cores
are larger than others. This typically happens in graph processing,
and results in inefficient utilization of execution resources and
longer execution time. To this end, different approaches have been
proposed in literature to alleviate control flow divergence. We
summarize these approaches in Table 4 along with the advantages
and disadvantages of each aprroach. In the following paragraphs,
we discuss these approaches in more detail. Since it is not possible
to review all the related works in each approach, we only discuss
one or two works from each approach.

3.1. Regrouping divergent warps

Fung et al. [48] proposed dynamic warp formation (DWF) that
is not restricted to the conventional stack-based PDOM reconver-
gence mechanism. Instead, DWF dynamically re-forms divergent
warps into new non-divergent warps on the fly. That is, at run-
time, when divergence occurs, the hardware forms new denser
warps by combining consistent threads from different warps that
follow same control flow path. However, DWF performance largely
depends on thewarp scheduling policy to increase the opportunity
of forming denser warps. Moreover, DWF does not reconverge
diverged warp at IPDOM in order to amortize coalesced memory



70 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

Table 4
Alleviating control flow divergence approaches.
Approach Works Pros (+) and Cons (−)

Dynamically regrouping
divergent warps

[25,48,120,148] + improves SIMD utilization.
− leads to starvation eddies.
− increases memory
divergence and inefficient
memory utilization.

Large Warp/CTA
compaction

• Large warp compaction [46,160,191]
• Thread remapping/ rearranging
[189,226,257]

+ improves SIMD utilization.
− CTA coarse-grain synch.
− reduces Thread Level
Parallelism (TLP).

Multi-path execution [44,152,190,221] + improves TLP. − still low
SIMD utilization.

MIMD-like architecture • Variable warp sizing [119,151,194]
• Stack-less architecture [216]
• Multiple SIMD, Multiple Data
(MSMD) [235]
• Temporal-SIMT [99,125]

+ improves both SIMD
utilization and TLP.
− significant changes to
baseline. − In [125,235] , it
requires explicit synch at
IPDOM.

Dynamic kernels/threads
creation and aggregation

• Dynamic threads [53,105,171,215]
• Dynamic CTAs [1,236,237]
• Dynamic kernels [220]
• Software control dynamic kernels
[32,63]

+ improves SIMD utilization
and mitigates memory
divergence. − kernel launch
overhead. − workload
imbalance and low TLP.

In-core special unit
accelerator

• Dataflow accelerator [233,234]
• Neural accelerator [260]
• Scalar unit [257]

+ improves utilization and
energy efficiency. − requires
changes to SW stack.
− works only for specific
categories of workloads.

Compiler- and
software-based
approaches

• Software optimization [272]
• Compiler-based optimization
[40,84,101,122,125]
• Approximate/neural acceleration
[61,199]
• Warp-Consolidation [136].

+ no HW changes - still not
as efficient as hardware
approaches, especially in
highly divergent workloads
(e.g. graph processing)

address of converged warps. This results in starvation eddies and
inefficient utilization of memory bandwidth [49].

3.2. Large Warp/CTA compaction

Fung and Aamodt [46] proposed thread block compaction (TBC)
that allows a group of warps, that belong to the same thread
block, to share the same PDOM stack. Hence, at a divergent branch,
threads from the same thread block are compacted into newmore
dense warps to better fill the SIMD lane; thereby achieve better
performance. However, TBC stalls all warps within a CTA on any
potentially divergent branch until all warps reach the branch point.
This coarse-grained barrier synchronization, which is not required
for correctness, reduces thread level parallelism and decreases
performance in some cases.

Rhu and Erez [191] proposed compaction-adequacy predictor
(CAPRI), a fundamentally new approach to branch compaction
that avoids the unnecessary synchronization required by previous
technique (TBC). CAPRI dynamically identifies the compaction-
effectiveness of a branch and only stalls threads that are predicted
to benefit from compaction.

Rhu and Erez [189] observed that control frequently diverges
in a manner that prevents compaction because of the way in
which the alignment of a thread to a SIMD lane is fixed. Therefore,
they proposed SIMD lane permutation (SLP) as an optimization
to expand the applicability of compaction in case of conventional
compaction technique is ineffective. Further, SLP seeks to rear-
range how threads are mapped to lanes such that it allows even
programmatic branches to be compacted effectively; thereby im-
proving SIMD utilization.

3.3. Multi-path execution

Rhu and Erez [190] proposed dual-path stack (DPS) that exe-
cutes the two divergent paths (i.e., the taken and non-taken paths)
in parallel, instead of stacking the paths one after the other in
PDOM stack. DPS ensures reconvergence of the two divergent
paths at immediate post-dominators. To avoid false dependencies
between independent splits, DPS maintains separate scoreboard
units for each path and checks both units to make sure there are
no pending dependencies across divergence and reconvergence
points.

ElTantawy et al. [44] proposed a branch divergence handling
mechanism which enables efficient multi-path execution and al-
lows divergent paths to interleave with each other. Compared
to the previous method (DPS) that enables interleaving only two
divergent paths, this proposed method allows arbitrary number of
divergent control flow paths to interleave; thereby increasing the
available thread-level parallelism and improves the performance.
Applications with nested divergent branches significantly benefit
from multi-path execution.

3.4. MIMD-like architecture

Rogers et al. [194] observed that regular applications perform
better with a wider warp size, whereas divergent applications
achieve better performance with a smaller warp size. In order to
take the advantage of both mechanisms, they proposed Variable
Warp Sizing (VWS) which improves the performance of diver-
gent applications by using a small base warp size in the pres-
ence of control flow and memory divergence. On the other hand,



M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 71

for regular applications, VWS groups sets of these smaller warps
together by ganging their execution in the warp scheduler and
thus amortizing the energy consumed by fetch, decode, and warp
scheduling across more threads. In short, VWS makes use of a
hierarchical warp scheduler, enabling divergent applications to
execute multiple control flow paths while forcing convergent ones
to operate in lock-step.

Lee et al. [125], Keckler et al. [99] proposed Temporal-SIMT
(T-SIMT), a new microarchitecture where each warp is mapped to
a single lane, and the threads within a converged warp dispatch
an instruction one after the other over successive cycles. Upon
divergence, threads progress independently and instructions sim-
ply dispatch for a single cycle. The independent lanes essentially
operate as a traditional multithreadedMIMD processor; and hence
divergence does not reduce the SIMD units utilization.

Wang et al. [235] proposed Multiple SIMD Multiple Data
(MSMD), a flexible SIMDdatapaths that canbe repartitioned among
multiple control flow paths upon divergence. That is, multiple
paths can be issued to the same SIMDvector and execute in parallel
as long as the data fragments generated from multiple paths are
equal to the SIMD width.

The main advantage of MIMD-like approach compared to pre-
vious techniques is that it improves both SIMD efficiency and
thread level parallelism for divergent applications, while previous
works only improve either of them. However, it requires quite
large changes to the baseline architecture. Further, T-SIMT and
MSMD need a sophisticated hardware mechanism to ensure load
balancing of divergent threads over SIMD lanes, especially in highly
divergent data-dependent applications, such as graph processing.
They also lack a hardware mechanism to track reconvergence of
diverged warp in order to perform memory address coalescing,
therefore, it is required to insert special synchronization instruc-
tions to regroup divergent warps at the IPDOM.

3.5. Dynamic kernels/threads

Steffen and Zambreno [215] proposed a SIMT architecture in
which runtime threads are able to create kernel, called micro-
kernel, in order to improve SIMT efficiency for ray tracing al-
gorithms. In the proposed scheme, new threads are created to
replace branching statements that cause low SIMD efficiency. The
proposed architecture is composed of two components. The first
part allows the original threads to create new processing threads.
In the second part, the new threads are grouped together to for-
mulate new warps. These new warps execute the same micro-
kernelwithout branching statements; thereby improving the SIMD
efficiency.

Kim and Batten [105] observed that one of the common soft-
ware optimization techniques to improve workload balancing
among threads in irregular applications, is to employ a shared
software worklist (SWWL). That is, a group of persistent threads
continuously access the SWWL to determine the workload to
operate on. However, one drawback of SWWL is that hundreds
of threads simultaneously access the SWWL resulting in high
memory contention and sub-optimal load balancing. Thus, they
proposed equipping GPGPUs with a hardware work-list (HWWL)
that can be accessed via a software layer similar to SWWL. To avoid
memory contention, HWWL is implemented as distributed hard-
ware queues attached with the GPGPU execution units. In order to
achieve optimal intra-core and inter-coreworkloadbalancing, they
employ a local and global work redistribution unit that achieves
dynamic, fine-grain load balancing among the running threads.

In order to improve the efficiency of irregular GPGPU work-
loads,modernGPUs [164,165] offer a newexecutionmodel, named
CUDA Dynamic Parallelism (CDP) [163], that allows kernels to be
launched from GPU device without going back to the CPU host.

This new functionality can be used to dynamically form struc-
tured parallelism (DFP) from unstructured irregular applications
(i.e., convert irregular divergent behavior to regular convergent
behavior). Wang and Yalamanchili [239] observed that CDP im-
proves the performance; however, the huge kernel launching over-
head could negate the performance benefit of DFP. The overhead
is due to the large number of launched kernels, the associated
memory footprint and the low number of running warps per core.
Thus, Wang et al. [236] proposed new mechanism, called Dy-
namic Thread Block Launch (DTBL), that employs light-weight
thread block rather than heavy-weight device kernel for DFP. The
dynamic creation of thread blocks can effectively increase the
number of running warps per core. Also, DTBL overhead and the
associated memory footprint are significantly lower than that of
kernel launch. As a result, DTBL enables more efficient support of
DFP.

Sartori and Kumar [199] proposed free launch, a new approach
to overcoming the shortcomings of dynamic kernel launching. The
proposed approach reuses the persistent parent threads to process
the child kernel tasks, which is able to eliminate the launching
overhead of dynamic kernels. It adaptively assigns tasks to parent
threads in order to achieve a better load balance over GPU cores.
The new technique does not require any hardware changes and
shows significant improvement on a real GPU silicon.

3.6. Special unit accelerator

Voitsechov and Etsion [233,234] proposed an energy-efficient
hybrid Dataflow/von Neumann architecturewhich aims to achieve
the energy efficiency of dataflow accelerator and the generality
of the von Neumann model for partitioning and executing large
kernels. The proposed architecture concurrently executes vector
of threads on dataflow accelerator instead of the conventional
instruction-fetch global pipeline manner, while it still coalesces
different threads that need to execute the same basic block based
on von Neumann control flow semantic. In their approach, ac-
tive threads are coalesced according to their control flow and
are executed concurrently, therefore improving execution units
utilization for irregular workloads.

3.7. Compiler- and software-based approaches

For compiler and software optimizations, Zhang et al. [272]
proposed an optimized runtime thread-to-data remapping that
removes non-coalesced memory accesses and thread divergences.
Diamos et al. [40] suggested thread frontiers as an alternative
mechanism to the immediate post-dominator reconvergence al-
gorithm, which does not guarantee the earliest reconvergence
point in an unstructured control flow. Sartori and Kumar [199]
observed that many GPU applications exhibit error tolerance to
propose branch and data herding. Thus, they proposed a technique
that alleviates branch divergence by forcing the divergent threads
to execute the most popular path. A profiling framework was
proposed to maximize performance while maintaining acceptable
output quality.

4. Efficient utilization of memory bandwidth

GPGPU caches and memory hierarchy suffer from severe re-
source contention which may degrade the performance due to the
massive multithreading. Memory divergence is the main source
of GPU resource contention, especially caches contention [195].
Memory divergence occurs when threads in the same warp access
different regions of memory in the same SIMT instruction. More-
over, as we discussed earlier, GPUs are throughput-oriented archi-
tecture that run hundreds of threads simultaneously, thus many



72 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

GPGPUs are sensitive to memory bandwidth. Designing a high-
bandwidth many-thread aware memory hierarchy is required to
sustain the high memory bandwidth demands of GPGPU applica-
tions. In Section 4.1, we discuss proposed techniques to alleviate
resource contention, and in Section 4.2, we present works that
aim to design a throughput-oriented high-bandwidth memory
hierarchy.

4.1. Alleviating cache thrashing, and resource contention

Due to the massive multithreading and the limited capacity of
L1 cache, irregular GPGPU applications cause severe cache con-
tention throughout memory hierarchy. Different methods have
been proposed in literature to alleviate the problems associated
with GPU caches and resource contention. We summarize these
methods in Table 5. In the following paragraphs, we discuss these
methods in more detail.

4.1.1. Two-level warp scheduling
Narasiman et al. [160] observed that, in commonly-used round-

robin warp scheduling policy (RR), all warps arrive the same long
memory latency instruction within the same time; thereby reduc-
ing the available warps ready to execute and significantly hinder-
ing the ability to hide long memory latency. Further, running all
the warps at the same time may destroy intra-warp data locality
and cause cache contention. To address these issues, they pro-
posed two-level round-robin warp scheduling (TL-RR), in which
thewarps are split into fetch groups. TL-RR executes only one fetch
group at a time and it schedules warps from the same fetch group
in a round-robin fashion. When the running warps reach a long
latency operation, then the next fetch group is prioritized. Hence,
warps reach long latency instructions at different times, leading to
better memory latency hiding capability. Also, this reduces cache
contention by running lower number of warps that access the L1
cache.

Jog et al. [94] proposedCTA-aware locality-awarewarp schedul-
ing policy (OWL) that improves the previously proposed TL-RR
warp scheduling. OWL augments the TL-RR with CTA-awareness,
such that warps are split into groups of CTAs basis rather than
warps basis, resulting in increased intra-CTA locality. Further, in
contrast to the strict TL-RR policy that prioritizes a group of CTAs
until they stall, OWL gives a group of CTAs higher priority when
their data exist at the L1 cache such that they get the opportunity to
reuse it, therefore improving L1 hit rates and alleviating cache con-
tention. They also proposed Bank-Level-Parallelism-aware (BLP-
aware) warp scheduling andmemory-side data prefetcher in order
to improve DRAM bandwidth utilization via exploiting memory
bank-level parallelism and increasing row-buffer locality.

4.1.2. Coarse-grained CTA throttling
Kayıran et al. [97] demonstrated that executing the maximum

possible number of CTAs on a GPU core (i.e., increasing TLP to
the maximum) does not always lead to better performance. In
fact, they found out that high number of concurrently running
warps might generate massive number of pending memory re-
quests, thereby create contention in cache, interconnection and
main memory. This results in longer memory latency and perfor-
mance slowdown. To alleviate resource contention, they proposed
dynamic CTA scheduling mechanism (DYNCTA), which aims to
allocate the optimal number of CTAs per GPU core that alleviate
memory contention according to an application characteristics.
DYNCTA dynamically adjusts over sampling periods the number of
active CTAs per GPU core that reduces thememory latencywithout
sacrificing the available TLP. In other words, it tries to find a trade-
off number of lower active CTAs that reduces resource contention
whilemaintaining a reasonable number of active CTAs that are able

to tolerate longmemory latency and keep the SIMDexecutionunits
utilized.

Lee et al. [130] proposed two orthogonal thread block schedul-
ing schemes that aim to reduce resource contention and exploit
inter-CTA locality. First, similar to previously work DYNCTA, Lazy
CTA scheduling (LCS) was proposed to determine the optimal
number of CTAs per core. In contrast to DYNCTA that monitors the
workload behavior for the entire kernel execution, LCS leverages
GTO scheduler to find the optimal number of thread blocks at the
early beginning of kernel execution. They found out that calcu-
lating the number of executed instructions under GTO within the
first sampling execution period can be used as a good measure to
find the best number of thread blocks. Second, they also showed
how block CTA scheduling (BCS), which assigns consecutive thread
blocks to the same SM, can improve the inter-block locality and in-
crease L1 hit rate. The twoproposed LCS and BCS are synergistically
combined together to achieve the maximum performance.

4.1.3. Fine-grained warp throttling
Rogers et al. [195] noticed that, due to themassivemultithread-

ing and the limited capacity of L1 cache, divergent GPGPU applica-
tions cause severe cache contention. Hence, they proposed Cache
Conscious Wavefront Scheduling (CCWS), a hardware mechanism
that adaptively throttles the number of active warps to alleviate
L1 cache thrashing. Unlike the previous approach, CCWS does the
throttling at fine-grain (warp level) rather than coarse-grain (CTA
level). CCWS uses a victim tag array, called lost locality detector, to
detect warps that have lost locality due to thrashing. These warps
are prioritized till they exploit their locality while other warps
are descheduled (i.e., not allowed to issue any load instructions).
CWWS can outperform any cache replacement scheme including
the Belady-optimal policy. Later, Rogers et al. [196] introduced a
follow-upwork and proposedDivergence-AwareWarp Scheduling
(DAWS). DAWS is a divergence-based cache footprint predictor to
calculate the amount of locality in loops required by each warp.
DAWS uses these predictions to prioritize a group of warps such
that the cache footprint of these warps do not exceed the ca-
pacity of the L1 cache. Compared to CCWS, DAWS is a proactive
mechanism that prevents lost locality before it happens and adapts
throttling mechanism to the current warps divergence state.

4.1.4. Throttling and cache bypassing
Li et al. [137] observed that previous CTA or warp throttling

techniques leave memory bandwidth and other chip resources
(L2 cache, interconnection and execution units) significantly un-
derutilized. Thus, they proposed a cache bypassing scheme built
on top of CCWS, named Priority-based Cache Allocation (PCAL).
At the beginning of kernel execution, PCAL executes an optimal
number of active warps, that alleviates thrashing and conflicts,
then extra inactive warps are allowed to bypass cache and utilize
the other on-chip resources. Thus, PCAL reduces cache thrashing
and effectively utilizes the chip resources that would otherwise go
unused by a pure thread throttling approach. A similar approach
was proposed by Zheng et al. [274], called Adaptive Cache and
Concurrency (CCA). CCA improvesDAWSby allowing extra inactive
warps and some streaming memory instructions from the active
warps to bypass the L1 cache and utilize on-chip resources.

Li et al. [139] proposed a software-based CTA clustering tech-
nique to reshape the default CTA scheduling in order to exploit
inter-CTA locality by grouping the CTAs with potential reuse to-
gether on the same SM. Further, they proposed a software CTA
throttling and cache bypassing mechanism that limits the number
of concurrent CTAs on an SM to alleviate the resources contention.
The proposed techniques show a significant performance gain on
real GPU systems.



M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 73

Table 5
Alleviating cache thrashing, and resource contention works.
CTA/Warp scheduling policy • Two-level warp scheduling: [54,94,160,266]

• Coarse-grained CTA scheduling/throttling: [97,130,211,252,254]
• Fine-grained warp scheduling/throttling: [124,149,195,196,244,268]
• Throttling + cache bypassing [28,137,139,274]
• Critical warp awareness: [14,21,121,132,145,177]

Cache management scheme • Cache replacement policy and cache bypassing:
[28,33,39,87,90,117,131,138,223,243]
• Compiler- and software-based cache bypassing: [34,88,135,157,253,254]

Ordering buffers [87,115,203]

Resource tuning [181,204]

4.1.5. Critical warp awareness
Lee et al. [121] observed that, due to memory contention and

workload imbalance of some irregular GPGPU applications, some
warps may be assigned more workload and exhibit longer la-
tency compared to other warps within the same Thread Block.
Hence, fast warps are idle at a synchronization barrier or at the
end of kernel execution until the critical (i.e., the slowest) warp
finishes execution. Thus, the overall execution time is dominated
by the performance of these critical warps. To tackle this prob-
lem, they proposed criticality-aware warp acceleration (CAWA).
CAWA dynamically identifies critical warps and coordinates warp
scheduling and cache prioritization to accelerate the critical warp
execution.

4.1.6. Cache management and bypassing
Chen et al. [33] proposed G-Cache to alleviate cache thrashing.

To detect thrashing, they equip L2 cache tag array with extra bits
(victim bits) to provide L1 cache with some information about the
hot lines that have been evicted before. An adaptive cache replace-
ment policy is usedby L1 cache to protect these hot lines. Chen et al.
[28] continued their work and proposed Coordinated Bypassing
and Warp Throttling (CBWT). CBWT adopts a thrashing-resistant
CPU cache management scheme, Protection Distance Prediction
(PDP) [42], to GPU cache. PDP employs cache bypassing to protect
hot cache lines. Excessive bypassingmay over-saturate the on-chip
network. Therefore, cache bypassing policy is coordinated with a
dynamic warp throttling mechanism to prevent on-chip resources
from being over-saturated.

4.1.7. Ordering buffers
Jia et al. [87] proposed Memory Request Prioritization Buffer

(MPPB) which improves caching efficiency of massively parallel
workloads. The idea of MRPB is two-fold. First, a FIFO requests
buffer is used to reorder memory references so that requests from
the same warp are grouped and sent to the cache together in
a more cache-friendly order. This results in drastically reducing
cache contention and improving use of the limited per-thread
cache capacity. Second,MRPB allowsmemory request that encoun-
ters associativity stall to bypass L1 cache. Thus, when bursts of
conflicting memory requests occur, cache bypassing increases re-
quest processing throughput and prevents caches from becoming
congested.

4.1.8. Resource tuning
Sethia and Scott [204] noticed that the high number of active

threads, GPGPU executes concurrently, leads to contention and
saturation for one of the on-chip resources like execution units,
data cache and memory bandwidth, while leaving other resources
underutilized. To address this issue, they proposed, Equalizer, a
dynamic runtime system that tunes number of thread blocks,
core and memory frequency to match the requirements of the
running kernel, leading to efficient execution and energy saving.
The sources of efficiency behind Equalizer are two-fold. First, it

reduces power by throttling underutilized resources with mini-
mal performance degradation. Second, the bottleneck resource is
boosted to mitigate contention and achieve higher performance
without significant energy increase.

4.2. High-bandwidth many-thread-aware memory hierarchy

GPUs are throughput-oriented architecture that run hundreds
of threads simultaneously. For this reason, memory bandwidth is
a critical bottleneck for modern GPU systems due to limited off-
chip bandwidth and the increasing gap between GPU core and
memory performance. Evenwith high-bandwidthmemory, a high-
throughput interconnection throughout the memory hierarchy is
also required to supply cores with data as fast as memory band-
width, otherwise the expensive high-bandwidth memory will be
useless. Thus, designing a high-bandwidth many-thread aware
memory hierarchy is required to sustain the memory bandwidth
demands of the running threads. Differentmethods have been pro-
posed in literature to alleviate memory bandwidth bottleneck. We
summarize these methods in Table 6. In the following paragraphs,
we discuss these methods in more detail.

4.2.1. Mitigating off-chip bandwidth bottleneck
Rhu et al. [193] observed that regularly structuredGPGPU appli-

cations benefit fromcoarse-grained (CG)memory access (i.e., fetch-
ing large block size per memory access) by exploiting spatial
locality and achieving the peak memory bandwidth. On the other
hand, emerging irregular workloads benefit from fine-grain (FG)
memory access by avoiding unnecessary data transfers, that may
be happened under CG policy, resulting in efficient utilization of
the off-chip memory bandwidth and energy saving. To achieve
the best of both schemes, they proposed a locality-aware mem-
ory hierarchy (LAMAR) that adaptively tunes the memory access
granularity for the running kernel. LAMAR employs CG accesses
for kernels with high temporal and spatial locality, while applying
FG accesses for irregular divergent workloads in attempt to reduce
memory over-fetching. LAMAR employs a low-cost hardware pre-
dictor mechanism, based on bloom filter, to determine the best
access granularity.

It has been found that off-chip memory bandwidth is a limit-
ing bottleneck for many memory-intensive GPGPU applications.
Data compression is one of the powerful techniques that can be
used to alleviate the memory bandwidth bottleneck. To that end,
Vijaykumar et al. [231] proposed, Core-Assisted Bottleneck Accel-
eration (CABA) framework, that exploits the underutilized compu-
tational resources to perform useful work and alleviate different
bottlenecks in GPU execution. For instance, to alleviate memory
bandwidth bottleneck, CABA dynamically creates assist warps that
execute with the original warps side by side on the same GPU
core. Assistwarps opportunistically use idle computational units to
perform data decompression for the incoming compressed cache
blocks and compression for the outgoing cache blocks, leading
to less transferring data from memory and mitigating memory
bandwidth problem.



74 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

Table 6
High-bandwidth many-thread-aware memory hierarchy works.
Reducing Off-Chip Memory
Traffic and Mitigating Off-chip
Bandwidth Bottleneck

• Reducing memory over-fetching: adaptive access granularity [193],
removing duplicate memory traffics [176], fine-grained DRAM [169]
• Data compression: [182,200,231]
• Value prediction and approximation: [198,261]
• Processing-In-Memory: [79,180]

Memory Divergence
Normalization

• L1 cache normalization [221,243]
• Memory scheduler normalization [27]
• L2 cache and memory scheduler [18]

Interconnection Network [22,85,107,276]

Main Memory Scheduling • Low-complexity memory scheduling [110,269]
• Managing DRAM latency divergence [18,27,118]
• Fairness-awareness [91,92]
• Critical-awareness [134]

Heterogeneous Memory
Management

• Page placement strategy: [4,5]

Reducing CPU–GPU Memory
Transfer Overhead

• Overlapping GPU execution and data transfers: [60,106,109,111,147]
• Kernel fusion/fission: [248]
• Shared HMC-based memory systems: [108]

Samadi et al. [198] introduced an approximate computing for
GPUs that allows trading off performance with output accuracy
based on the desired level of quality. They proposed three com-
piler optimization techniques. One optimization is data packing
wherein the number of bits used to store input arrays is decreased,
thereby sacrificing precision to reduce memory bandwidth con-
tention and increase throughput. Similarly, Yazdanbakhsh et al.
[261] presented an approximation technique in which the GPU
drops some portion of load requests which miss in the cache after
approximating their values. The load requests that have the small-
est impact on quality are selected for approximation. Dropping
requestsmitigatesmemory bandwidth demand by removing them
from the system. A drop rate is selected by the compiler to control
the performance/energy and quality tradeoff.

3D-stacked memory technology provides a promising oppor-
tunity to mitigate the memory bandwidth bottleneck by tightly
connecting a logic layer and DRAM layers with high bandwidth
connections. In these architectures, it enables processing in mem-
ory (PIM) by offloading memory-intensive computation portions
to be executed in memory logic layer. However, it is challenging
on how to enable computation offloading and data mapping trans-
parently without burdening the programmer. To address this chal-
lenge, Hsieh et al. [79] proposed a compiler-based technique for
offloading code segments to PIM logic layer based on a simple cost–
benefit analysis. Further, they introduced a runtime prediction
mechanism to locate data that will be accessed by offloaded code
in the same memory stack. The proposed techniques minimize
off-chip bandwidth consumption without requiring programmer
effort.

4.2.2. Memory divergence normalization
Chatterjee et al. [27] showed experimentally that there is a high

variance in the latency of memory requests issued by threads of
the same warp. This memory latency divergence occurs because
of inter-warp interference at the cache and DRAM memory con-
troller. In this case, the warp is unable to make progress until the
last memory request from a vector load instruction is returned. To
alleviate this problem, they proposed a memory scheduling policy
to balance this latency divergence. They added an interconnection
network between all memory controllers for exchanging memory
access latency divergence information. By using this information,
the memory access latency divergence is reduced. Similarly, to
alleviate the same issue, Ausavarungnirun et al. [18] proposed a
more holistic solution that ensures memory latency normalization
at both DRAM system as well as last level cache.

Jog et al. [93] noticed that RR and TL-RR are not effective to
hide memory latency in the presence of simple prefetcher. They

observed that simple prefetcher that generates a prefetch mem-
ory request for the consecutive warp of the same fetch group or
for the warp of the next fetch group may cause late prefetch-
ing (i.e., prefetching request and the original memory request
are issued around the same time) as well as inaccurate useless
prefetching. To overcome these problems and avoid the complexity
of using sophisticated prefetchers, they proposed prefetch-aware
warp scheduling, that coordinates simple data prefetcher andwarp
scheduling in an intelligent manner such that the scheduling of
two consecutive warps are separated in time, and thus prefetching
becomes more effective.

4.2.3. Interconnection network
As previouslymentioned, GPGPUs run hundreds of threads con-

currently. In order to quickly feed thesemassive number of threads
with the required data, GPGPUs are equippedwith high bandwidth
DRAM memory (e.g. GDDR or HBM). However, a high-bandwidth
interconnection is also required to supply cores with data as fast
as memory bandwidth, otherwise the expensive high-bandwidth
memory will be useless. Building a high throughput interconnec-
tion network could be very expensive in terms of area and power
consumption. Hence, Bakhoda et al. [22] proposed a throughput-
effective on-chip network that is optimized for higher application
throughput per area. In particular, they proposed a checkerboard
organization that exploits half-routers to reduce network costwith
minimal loss in performance. Further, they extended the checker-
board network with multi-port routers to address the many-
to-few-to-many bottleneck and provide a throughput-effective
microarchitectural technique to improve network performance by
increasing the terminal bandwidth of the network.

4.2.4. Main memory scheduling
Yuan et al. [269] observed that the interconnection network

which is between cores andmemory controllers can destroymem-
ory access row-buffer locality. To tackle this problem, they pro-
posed an interconnection network arbitration scheme to reserve
row locality and reduce complexity circuit design of FR-FCFSDRAM
controller. To achieve that, they employ an interconnection arbi-
tration scheme to prioritize memory requests accessing the same
row first. Using this scheme, they achieve a performance similar to
the complex FR-FCFS only using a simple FIFO memory controller.

4.2.5. Heterogeneous memory management
In next-generation cache-coherent non-uniform-memory-

access (CC-NUMA) CPU–GPU systems, both CPU and GPU will
be able to access a unified globally-addressed memory, and thus



M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 75

programmers no longer need to explicitly transfer data to and
from GPU memory. In such systems, a question arises for GPGPU
workloads, where to initially place a new memory page, in the
far capacity-optimized CPU memory or in the near bandwidth-
optimized GPU memory, such that the overall system efficiency
is maximized? Agarwal et al. [5] showed that applying traditional
Linux page placements policies, which have been used for CPU-
only NUMA systems and aim to minimize the memory request
latency, may not be effective in CPU–GPU NUMA systems. This is
due to the fact that GPU performance is more sensitive to memory
bandwidth. Thus, they proposed bandwidth-aware placement that
maximizes GPU performance by balancing page placement across
the memories based on the aggregate memory bandwidth avail-
able in a system.

4.2.6. CPU–GPU memory transfer overhead
Previous work have shed light on the importance of CPU–

GPU data transfer and communication in case of discrete GPU
is connected with CPU via PCIe [60,147]. They showed that data
transfer and kernel launch overhead can be a dominant and lim-
ited factor to the overall GPU performance, which may negate
the potential speedup from using GPU acceleration and limit the
scope of applications that benefit from GPUs. Typically, CPU sends
data to GPU in coarse-grained data transfers and synchronization.
Therefore, GPU has to wait and synchronize for all of data blocks
to be transferred and ready, but this long latency often results
in a performance slowdown. To address this issue, Lustig and
Martonosi [147] proposed fine-grained CPU–GPU synchronization
enabled by a hardware-managed full-empty bits to track when
regions of data have been transferred. Thus, the GPU is able to start
execution once the required block of data is available. Software-
level APIs are proposed to allow programmer to launch kernel
earlier and overlap data transfer with execution.

5. Increasing parallelism and improving execution pipelining

GPGPUs achieve the highest performance by running many
concurrent threads on their massively parallel architecture. How-
ever, some applications have a low number of active thread blocks
due to the small input size or the unavailability of some required
resources in SM (e.g. registers or shared memory), thus they fail
to efficiently utilize the execution units. This results in inefficient
utilization of execution unit and hinders the GPU ability to hide
long memory latency. Previous works proposed new techniques
in order to reduce resource fragmentation and run the maximum
number of warps per core. Further, other approaches proposed
running multiple applications on the same GPU to exploit these
underutilized resources and increase overall throughput. Another
way to improve execution efficiency and increase parallelism is
to exploit scalar opportunities and value similarity between the
running warps such that scalar instructions can be executed con-
currently along with other SIMT instructions. In this paper, we
summarize these works that aim to increase parallelism and im-
prove execution pipelining in Table 7. In the following subsections,
we discuss these works in more detail.

5.1. Reducing resource fragmentation and increasing parallelism

Gebhart et al. [55] noticed that application’s needs for on-chip
storage such as registers, cache, and scratchpad memory, vary
widely from one application to another, whereas traditional GPU
designs fix the capacities of these storages at design time. Thus,
manyGPGPUapplications are limited by the capacity of a particular
local storage. To provide more design flexibility, they proposed a
unified local memory which integrates the register file, L1 cache,
and scratchpad memory into one large on-chip storage. Then, the

hardware can dynamically partition the on-chip storage according
to each application’s needs. This flexible partitioning of capacity
increases available parallelism and improves both performance
and energy consumption.

Yang et al. [258] discussed the problems that are associated
with thread block level resource management and warp-level di-
vergence. They observed that different warps in a thread block can
finish at different times. In this scenario, the allocated resources
(e.g. registers, shared memory, etc.) of the early completed warps
are not available until the longest runningwarp in the same thread
block finishes. This results in severe resource underutilization and
affects the TLP that may be achieved if new warps are launched
instead. They classified the resource underutilization problems
as temporal and spatial. Temporal underutilization, as previously
mentioned, is caused due to differences in run times of warps of
a thread block, whereas spatial underutilization is caused because
of unavailability of enough resources to launch a new thread block.
To overcome both spatial and temporal resource underutilization
problems, they proposed, WarpMan, a fine-grained warp-level re-
source management instead of coarse-grained thread-block-level.
In particular, they introduced a hardware solution to launch a
partial thread blockwhen there are not enough resources to launch
a full thread block. This way, WarpMan effectively increases the
number of active warps and parallelism.

5.2. GPU multitasking

Previous work [2,174] observed that many GPGPU applications
are not able to proportionally scale and effectively utilize the
growing compute resources with each GPU generation. Therefore,
multitasking (or multi-programmed) execution, in which multiple
kernels from the same application or from different applications
execute concurrently on the same GPU platform, can efficiently
utilize the growing GPU resources. This paradigm has two advan-
tages. First, it significantly improves theGPUutilization and overall
throughput. Second, hardware support for concurrent applications
will facilitate operating systemmultitasking as well as consolidate
jobs from multiple independent users, which is an important fea-
ture to enable GPU virtualization and deploy GPUs in the cloud
platform. To this end, Pai et al. [174] proposed spatial multitasking
of GPU across concurrent applications. That is, multiple applica-
tions execute simultaneously on different cores within the same
GPU substrate. They evaluated a variety of heuristics on how to
partition GPU cores among running applications. On the other
hand, Awatramani et al. [20] and Lee et al. [130] proposed mixed
concurrent kernels execution, in which two applications execute
concurrently on the same core. They showed how such sharing
execution can improve the overall system throughput, especially
mixture of memory-intensive and compute-intensive workloads.
In this mixture, the compute-intensive workload’s warps hide the
memory latency of memory-intensive workload’s warps and thus
efficiently utilize the execution units.

Previous spatial multitasking work do not discuss how to exe-
cute new application on GPU while there exist some applications
running concurrently and they fully consume the available re-
sources. In this scenario, the new applicationwill have towait until
one of the running applications finishes execution. This sharing
paradigm is well known as cooperative multitasking. However,
this strategy may cause high-priority application suffering from
a long latency to execute. Additionally, it makes GPU vulnerable
to a malicious attacks. For example, malfunctioning application,
that may never yield GPU, will prevent other applications to start
execution. Thus, a task preemption strategy is required to improve
GPU multitasking. Tanasic et al. [218] proposed two preemption
mechanisms, context switching and draining, that can be used to
implement GPU multi-kernel scheduling policies. Context switch-
ing mechanism preempts all the running thread blocks and saves



76 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

Table 7
Increasing parallelism and improving execution pipelining works.
Reducing Resource
Fragmentation and Increasing
Parallelism

[55,230,251,258,265]

Multitasking (Concurrency
Support)

• Hardware-based spatial multitasking
– Resources partitioning [2,6,7]
– Fairness-aware memory subsystem [91,92]
– Mixed Concurrent kernels execution [20,130,179,240–242,255]

• Software-based spatial multitasking: [59,174,275]
• Preemptive Multitasking: [178,218,249]

Exploiting Scalarization
Opportunities

• Compiler-based static detection [10,29,125,217,257]
• Hardware-based dynamic detection [36,56,113,141,246,250,262]

Improving Execution Pipelining Data forwarding and Out-of-Order execution [57,112], Sliced datapath
[56], In-core special unit accelerator [234,260]

the execution contexts to off-chip memory (i.e., similar to conven-
tional operating system schedulers), whereas draining allows run-
ning thread blocks to continue execution. When the core finishes
all the running thread blocks, the core is preempted and can be
assigned to a new kernel.

To further reduce preemption latency, Park et al. [178] intro-
duced core flushing which drops an execution of a thread block
without context saving and re-executes the dropped thread block
from the beginning when it is relaunched. To ensure correctness of
core flushing, a GPU kernel must be idempotent (i.e., it produces
the same result regardless of the number of times it is executed).
They also proposed a collaborative preemption approach, Chimera,
that synergistically combines all the three previous mechanisms
together. Chimera can meet the deadline of a given preemption
latencywithminimal throughput overheads. To achieve this, when
a preemption request is received, Chimera checks the execution
progress of the running thread block. If thread block is at the
begging, middle or the end of execution, then Chimera employs
flushing, context switching and draining mechanism respectively.
Selecting the best policy based on the execution progress signifi-
cantly reduces the preemption overhead.

5.3. Exploiting scalar and value similarity opportunities

Previous works observed that many GPGPU workloads have
scalar instructions in which computation is identical across mul-
tiple threads within the same warp instruction (i.e., operands
are identical for all the threads in a warp). On average, 38% of
static SIMD instructions are detected by the compiler as scalar
opportunities [29]. These scalar opportunities can be exploited by
saving the scalar vector in only one scalar register, leading to power
saving. In addition, these scalar instructions can be executed only
once and eliminate computation redundancy, resulting in higher
instruction throughput and performance. Thus, modern GPU mi-
croarchitecture, like AMD’s GCN [10], leverages these scalar op-
portunities by statically detecting scalar instructions and executing
them on a separate scalar unit attached with each GPU core. Fur-
ther, other previous works observed that many GPGPU workloads
may also contain affine vector instructions. A vector is defined as
an affine, when the vector contains a consecutive strided values,
i.e., the vector values can be represented as V (i) = b + i ∗ s, where
b is the base, s is the stride and i is the thread index. These affine
vector instructions can be similarly exploited as scalar instructions
by saving them in only two registers (to save base and stride
values) and executed them on a separate scalar special unit [113].
This results in improving GPU performance and energy efficiency.
Table 8 summarizes and compares between previous works that
aim to exploit scalar and affine opportunities. We classify these
works based on the following metrics:

• Detection method: (a) dynamic detection using hardware
mechanism [36,56,113,246,250,262] or (b) static detection
using compiler support [29,125,217] or (c) programmable
scalar unit (i.e., the scalar unit can execute a separate in-
struction stream that is either generated automatically by the
compiler or manually developed by expert developers) [257].

• Execution approach: the scalar instructions are executed on
(a) a dedicated scalar unit located in each GPU core [10,56,
113] or (b) using one lane of the SIMD unit lanes and power-
off the other lanes [250,262] or (c) a Temporal-SIMT fashion,
where the vector and scalar instruction are executed on a
single scalar lane [99,125].

• Register file: the scalar operands can be saved at (a) the same
vector registers and a token-based bit is used to identify
whether a scalar or vector operand is saved in the register [36]
or (b) a separate scalar register file is used to save scalar
operands [10,113].

• Fetch-decode-issue stage: (a) the scalar instruction can share
the fetch, decode and issue units with other vector instruc-
tions [10,113] or (b) they can use separate fetch, decode
and issue units that execute in parallel with other vector
units [257].

• Exploited instructions type: the proposed approach may de-
tect and leverage (a) Intra-warp scalar opportunities (i.e.,
threads from the same warp perform the same computa-
tion) [10,113] or (b) Inter-warp scalar opportunities (i.e.,
threads fromdifferentwarps perform the same computation)
[250,262] or (c) affine instructions opportunities [36,113,
262].

5.4. Improving execution pipelining

Other previous works have been proposed to improve GPU
pipeline execution efficiency. Gilani et al. [57] observed that many
GPGPU applications do not have enough active threads that are
ready to issue instructions and hide short read-after-write (RAW)
dependencies caused by deep execution pipeline stages. Thus, they
proposed a low-power forwarded network that can considerably
improve the performance of many compute-intensive GPGPU ap-
plications. Another way to improve the execution pipeline effi-
ciency was proposed by Gilani et al. [56]. They observed that
16 bits are sufficient for accurate representation of operands for
many GPGPU instructions. This can be exploited to improve GPU
performance by splitting the existing 32-bit datapath into two
16-bit datapath slices. As a result, the GPU instruction throughput
can be increased by issuing dual 16-bit instructions from two
different warps in parallel using the sliced 32-bit datapath. Kim
et al. [112] presented a pre-execution approach for improving
GPU latency hiding and performance by employing run-ahead out-
of-order execution [158]. In their approach, when a warp stalls
for a long-latency operation such as off-chip memory accesses,



M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 77

Table 8
GPU scalarization works.

Detection Execution Register file Fetch-Decode-Issue
stages

Exploited
Instructions

Chen et al. [29] static separate/shared shared shared Intra-warp
scalar

Lee et al. [125],
Keckler et al.
[99]

static Temporal-SIMT shared shared Intra-warp
scalar

Yang et al. [257] static/
programmable

separate separate separate Intra-warp
scalar

Collange et al.
[36]

dynamic shared shared
token-based
register

shared Intra-warp
scalar/affine

Gilani et al. [56] dynamic separate separate shared Intra-warp
scalar

Xiang et al.
[250]

dynamic shared separate shared Intra- and
Inter-warp
scalar

Kim et al. [113] dynamic separate separate shared Intra-warp
scalar/affine

Yilmazer et al.
[262]

Intra-warp
static,
Inter-warp
dynamic

shared shared shared Intra- and
Inter-warp
scalar

AMD’s GCN [10] static separate separate shared Intra-warp
scalar

it continues to fetch and pre-execute successive instructions that
are not on the long latency dependence chain resulting in hiding
processing delay of operations and performance improvement.

6. Enhancing GPGPU programmability

GPGPU programming is hard and complex. Prior work have
explored new techniques to enhance GPGPU programmability. In
fact, most of these works were about addressing the same chal-
lenges that were found in conventional CPU multi-core program-
ming (e.g. cache coherence, memory consistency, synchronization
and transactional memory). However, this is not a trivial task for
GPUs, since GPUs run thousands of threads concurrently, whereas
multi-core CPUs run 4–16 threads. Building a scalable hardware
to enhance GPGPU programmability is a key challenge. It is worth
mentioning that enhancing GPGPU programmability is an impor-
tant feature for future GPUs in order to simplify GPGPU program-
ming and broaden the scope of applications that can benefit from
GPU acceleration. More importantly, enhancing programmabil-
ity strongly encourages High-performance computing (HPC) and
cloud computing communities to fully rely on GPU as a com-
pelling general purpose accelerator for emerging data-intensive
workloads in competition with other accelerator platforms, such
as in-field programmable gate array (FPGA). Thus, there is no
wonder that three previous works which aimed to augment GPU
with transactionalmemory [50], cache coherence [209] and virtual
memory [183] have been selected for IEEE Micro top picks4 in
2011, 2013 and 2014 respectively. In all, we summarize these
works that aim to improve GPGPU programmability in Table 9. In
the following subsections, we discuss these works in more detail.

4 Every year, IEEEMicro top picks community selects themost 10–13 significant
research papers in computer architecture based on novelty and potential for long-
term impact.

6.1. Coherence and consistency model

Current GPUs lack hardware cache coherence and require dis-
abling of private L1 caches or employing software-based bulk
coherence decisions (i.e., flush/invalidate all private L1 caches at
synchronization points) if an application needs coherent memory
view. Coherence largely simplifies supporting well-defined con-
sistency and memory models for high-level languages on GPUs.
However, applying naive CPU-like read-for-ownership protocol
(e.g. MOESI) will incur significant overheads. GPU runs 1000s
threads concurrently which requires high coherence traffic over-
heads and impractical amount of storage. To enable a scalable and
practical GPU cache coherence, Singh et al. [209] proposed a time-
based coherence framework for GPUs, named Temporal Coherence
(TC). In contrast to conventional coherence protocols that rely on
explicit messages to invalidate and maintain cache coherence, TC
uses globally synchronized counters to self-invalidate cache blocks
and maintain coherence without explicit messages. Synchronized
counters approach not only enables cache coherence, but also
eliminates all coherence traffic and protocol races. TC significantly
improves the performance of GPU applications with inter-CTA
communication over disabling private L1 caches.

As mentioned earlier, current GPUs employ software-based
bulk coherence decisions. However, bulk coherence actions neg-
atively affect performance. To address this problem, Gaster et al.
[52], Orr et al. [172] proposed scoped synchronization that follows
heterogeneous-race-free (HRF) model. Scopes take advantage of
the GPUs hierarchical memory model to limit the cost of bulk
coherence actions. In thismodel, threads executing on the sameSM
can communicate through the L1 cache without issuing any cache
flushes or invalidates, whereas threads from differents SMs need
to communicate through the higher level caches. However, scoped
HRF complicates GPU programming and does not use caches effec-
tively to optimize dynamic sharing patterns like work stealing [9].
To this end, Sinclair et al. [206] showed that it is possible to have
the simple data-race-free (DRF) model without scopes, meanwhile
achieving the performance benefits of scoped synchronization, by
applying the DeNovo coherence protocol to GPUs.



78 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

Table 9
GPGPU programmability works.
Coherence and Consistency
Model

• Timestamp-based coherence [209]
• Hybrid hardware-software coherence [100,116]
• Scoped heterogeneous-race-free (HRF) model
[52,67,78,172]
• Non-scoped data-race-free (DRF) model [9,206,207]
• Strong consistency model [68,188,208,213]
• Evaluating current GPU memory model [8]

Hardware Synchronization
and Atomics

[43,45,263]

Transactional Memory (TM) Hardware TM [30,31,47,50], Software TM [26,256]

Determinism, Debugging and
Data Races Detection

Deterministic GPGPU [95], Data race detection [76]

Memory Management and
Exception Support

Exception support [104,153,219], Hardware-based
memory management [109,111,273], Hardware-based
virtual memory support [19,183,183,185,185]

Hechtman and Sorin [68] analyze the issues of hardware
consistency models in the context of GPGPUs. They compared
various hardware consistency models for GPGPUs, including se-
quential consistency, total store order and relaxedmemorymodel,
in terms of performance, energy-efficiency, hardware complexity,
and programmability. Surprisingly, they found out that employing
hardware consistency models has negligible impact on the per-
formance of GPGPUs workloads. More importantly, GPGPUs can
be strongly ordered and often incur only little performance loss
compared to weaker consistency models. Furthermore, stronger
models enable simpler and more energy-efficient hardware im-
plementations and are likely easier for programmers to reason
about. However, the major drawbacks for GPU strong consistency
model works is that they omit dynamic sharing workloads in
their evaulation, and the proposed approachs are not scalable for
cuurent massive GPUs[9].

6.2. Transactional memory

Intra-block GPU communication between different threads that
belong to the same thread block is provided via Intra-core scratch-
pad memory. Recent GPUs also support global inter-block
communication, in which threads from different thread blocks can
communicate with each other, through global atomic operations.
These atomic operations can be used to build software synchro-
nization primitives, such as fine-grain locks, that can simplify the
programming and ensure execution correctness for many emerg-
ing GPGPU workloads. However, lock-based synchronization is
prone to deadlock and may cause incorrect execution behavior,
especially for GPU that executes hundreds of threads in parallel.
To enable efficient deadlock-free inter-block communication, Fung
et al. [50] proposed KILO TM, a scalable hardware Transactional
Memory (TM) system for GPGPUs. KILO TM does not rely on cache
coherence nor global atomic operations. Instead, it detects conflicts
via a fine-grain value-based approach that supports thousands of
concurrent transactions and requires negligible storage overhead.
Further, it employs bloom filter mechanism to speculate conflict
detection, resulting in increased parallelism in transactions com-
mit and performance improvement.

6.3. Deterministic GPU

In nondeterminism environment, running the same multi-
threaded program multiple times with the same input may pro-
duce different outputs. This behavior hinders programmer’s ability
to test and debug their GPGPU applications. In fact, as previously
mentioned, GPU runs thousands of threads which makes achiev-
ing low-cost scalable deterministic GPU a key challenge. To that
end, Jooybar et al. [95] proposed deterministic GPU, GPUDet, a

scalable hardware mechanism that provides determinism in GPU
architectures in order to ease debugging and testing of GPU appli-
cations. GPUDet enables a broader class of software applications
that can benefit from GPU acceleration. The key ideas behind
GPUDet are two-fold. First, it leverages the inherent determinism
of the SIMD hardware in GPUs to provide determinism within a
wavefront at no cost. Second, GPUDet exploits the Z-Buffer Unit,
an existing GPU hardware unit for graphics rendering, to allow
parallel out-of-order memory writes to produce a deterministic
output.

6.4. Memory management

Kim et al. [109] proposed GPUdmm, a high-performance
dynamic memory management for GPU architecture. GPUdmm
enables dynamic memory management for discrete GPU environ-
ments by using GPU memory as a cache of CPU memory with on-
demand CPU–GPU data transfers. The benefits of GPUdmm are
three-fold. First, GPUdmm simplifies the GPGPU programming by
relieving the programmer of CPU–GPUmemory management bur-
den. Second, it provides programmers a view of the CPU memory-
sized programming space. Third, GPUdmm effectively overlaps
GPU executions and CPU–GPU data transfers.

Pichai et al. [183] examined address translation in CPU/GPU
architecture to push toward fully-unified virtual address spaces
in heterogeneous platforms. This simplifies programming models
and reduces the burden on programmers to manage memory.
Therefore, they explored the design space of GPU cache-parallel
address translation. However, they found that adding CPU-style
address translation at the L1-level of the GPUs can degrade per-
formance. They showed that simple GPU-aware modifications to
conventional translation lookaside buffers (TLBs) and hardware
page table walkers (PTWs) can significantly reduce performance
overheads associated with address translation. They also showed
employing address translationwith two previous proposals for im-
proving GPU performance, TBC and CCWS, that we have discussed
in Sections 3 and 4.1 respectively, imposes noticeable overhead.
However, augmenting CCWS and TBC with TLB-awareness and a
few simple adjustments can recover most of this lost performance
and move address translation overheads into a range considered
acceptable in the CPU world.

7. CPU–GPU heterogeneous architecture

In order to amortize the increasing die area, recent years have
seen a noticeable trend from the industry to integrate CPU andGPU
cores on the same chip, as it can be seen in Intel’s Haswell [82],
AMD’s accelerated processing units (APU), like AMD Fusion
Kaveri [11], and NVIDIA’s Denver project [162]. In these architec-
tures, the concurrent CPU and GPU applications will share most of



M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 79

the on-chip resources, such asmemory controller, interconnection
network and last level cache). However, GPUs run thousands of
active threads concurrently,while CPUs runbetween4–16 threads.
This leads to more frequent memory requests generated by GPU
cores. Therefore, a fairness-aware scheme is required to manage
the concurrent applications and avoid GPU applications to mo-
nopolize the available resources. Further, when we integrate CPU
and GPU on chip, some sort of programmability is also required
to improve data sharing between CPU and GPU cores (e.g. cache
coherence and unified virtualmemory space). Enhancing program-
mmability and communication between CPU and GPU will lead to
broaden the space of applications that may benefit from GPU as
a general purpose accelerator. For the purpose of this study, we
classify the works that aim to improve CPU–GPU integration into
the different categories summarized in Table 10. In the following
subsections, we discuss these works in more detail.

7.1. Impacts of CPU–GPU integration

As we stated earlier, in order to take the full advantage of inte-
grated CPU–GPU heterogeneous architecture, programmers need
to rewrite their legacy code such that data-parallel portion is
offloaded to GPU while the remaining part is executed on CPU. As
the GPU becomes more programmable and CPU–GPU communi-
cation cost is reduced, more applications will be adopted to GPU
acceleration. Arora et al. [15] demonstrated that the remaining
serial code that the CPU will be expected in an integrated CPU–
GPU environment is entirely different than the code it has been
optimized for over the pastmanyCPUgenerations. Thus, they stud-
ied the characteristics of this new code that is supposed to drive
future CPU design and architecture. In particular, they showed
that the remaining CPU code tends to have lower instruction-level
parallelism (ILP), more complex load/store operations to prefetch
and more difficult branch prediction. Further, the serial code will
not benefit significantly from SIMD instructions or increasing the
number of CPU cores, owing to the limited availability of thread-
level parallelism (TLP) and data-level parallelism (DLP) that will be
already captured and exploited by the GPU instead.

7.2. CPU–GPU programmability

Power et al. [184] presented a framework for providing
directory-based hardware coherence between CPU and GPU cores
to ease programming and enable fine-grained sharing. However,
they experimentally observed that employing conventional block-
level directory-based cache coherence significantly hinders the
performance due to the tremendous coherence traffic generated
by the massive-multithreaded GPU. Therefore, in order to miti-
gate the coherence bandwidth effects of GPU memory requests,
they replace the fine-grained 64B-block-level directory with a
coarse-grained 1KB-region-level directory. Increasing the direc-
tory granularity basis significantly reduces the coherence traffic
and improves performance. This is due to the fact thatmanyGPGPU
applications exhibit high spatial locality in the memory access
stream, such as streaming applications. Thus, most requests will
not need to access the region directory because the permissions for
the requested region have been obtained already by prior requests.

7.3. Exploiting heterogeneity

Yang et al. [259] proposed COMPASS, a compute GPU-assisted
data prefetching scheme, to leverage the underutilized GPU re-
source for improving CPU single-threaded performance on a CPU–
GPU integrated system. COMPASS uses idle GPU core
resources to act as data prefetchers for CPU execution and success-
fully improve the memory performance of single-thread

applications. Their proposed scheme requires very lightweight
architectural support. Similarly, Woo and Lee [247] proposed to
collaboratively utilize CPU resources to act as programmable data
prefetchers for GPGPU applications. In this scheme, a novel com-
piler algorithms are developed to automatically create CPU pro-
grams from GPU kernels. These CPU programs run ahead of GPU
threads to prefetch the required data into the shared last level
cache for the GPU, resulting in higher cache hit and better perfor-
mance for GPGPU applications.

7.4. Shared resources management

As multiple CPU and GPU cores integrated together on the
same die chip, they eventually share the memory subsystem re-
sources, including last level cache, on-chip network and main
memory. As has been mentioned, such sharing mechanism can
lead to low system performance and starvation of CPU cores,
since GPU cores generate a large traffic of pending memory re-
quests that can heavily interfere with latency-sensitive CPUmem-
ory requests and monopolize the memory subsystem resources.
Two kinds of approaches have been explored to mitigate inter-
ference: application-aware resource management and throttling-
based management. Ausavarungnirun et al. [17], Lee and Kim
[123] and Lee et al. [127] equip shared resources, such as memory
controller, cache and interconnection network respectively, with
the ability to detect interference between CPU and GPU applica-
tions and prevent unfair CPU application slowdowns. On the other
hand, Kayiran et al. [98] preclude interference by throttling the
number of active threads running at GPU cores, and consequently
controlling the high rate of memory requests issued by GPU. In
the following sections, we discuss in detail the mechanism used
by each approach.

In order to mitigate CPU–GPU inter-application interference at
main memory, Ausavarungnirun et al. [17] proposed Staged Mem-
ory Scheduling (SMS), a decentralized architecture for application-
aware memory scheduling in the context of integrated CPU–GPU
systems. SMS decouplesmemory controller into three significantly
simpler stages that together improve system performance and
fairness. The first stage of SMS groups requests based on row-
buffer locality. At the second stage, SMS ensures fairness between
CPU and GPU memory requests by applying CPU-biased shortest
job first scheduling policy or GPU-biased round robin scheduling
policy. A dynamically configurable parameter is used to select
between the two policies based on the system’s needs. The last
stage consists of simple per-bank FIFO queue to issue low-level
memory commands.

To avoid GPU monopolizing last level cache, Lee and Kim [123]
proposed a thread-level parallelism (TLP) aware cache manage-
ment policy for CPU–GPU systems. As previously mentioned,
GPGPU applications can hide some of the off-chip access latency
by having a huge number of threads and continuing to switch
to the next available threads. However, they observed that other
GPGPU applications are cache-sensitive and are not able to toler-
ate long memory latency. Hence, they proposed a core-sampling
technique, which applies a different cache management policy to
each GPU core and regularly collects statistics on the performance
of these cores to see how these polices affect GPU applications. A
noticeable variance in performance of these cores implies that GPU
performance is sensitive to the cache policy. As a result, GPU cache-
insensitive applications are forced to bypass last level cache, while
CPU and GPU cache-sensitive applications are allowed to use cache
side by side. Moreover, they found out that GPU cores typically
access caches much more frequently than CPU cores. To ensure
fairness between CPU and cache-sensitive GPU workloads, they
introduced cache block lifetime normalization approach, which



80 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

Table 10
CPU–GPU heterogeneous architecture works.
Studying the Efficacy and
Impacts of CPU–GPU integration

• Performance and system impacts
[37,69,245,270]
• Impacts on CPU architecture: [15]
• Impacts on memory subsystem
[51,73,142,214,228]

CPU–GPU Programmability • Cache coherence: [3,184]
• Unified virtual memory:
[170,183,185]
• Synchronization and
communication: [72,147]

Exploiting Heterogeneity • CPU-Assisted GPU: data prefetching
[259]
• GPU-Assisted CPU: data prefetching
[247], on-the-fly computation
offloading [129,146,197]

Shared Resources Management • Interconnection network:
[127,128,264]
• Last Level cache management:
[123,150,187,271]
• Main memory: [17,86,225,238]
• Throttling-based technique: [98]

enforces a similar cache lifetime to both CPU and GPGPU appli-
cations and prevent GPGPU application to monopolize the shared
cache.

Lee et al. [127] tackled the problem of resource-sharing at
the on-chip network in CPU–GPU heterogeneous systems. They
proposed a feedback-directed virtual channel partitioning (VCP)
organization that fairly partitions the available network bandwidth
among CPU and GPU applications. To avoid GPU interference with
CPU applications, VCP dedicates separate injection queues and
virtual channels to CPU and GPU applications. Then, VCP samples
different virtual channels partitioning over different sampling pe-
riods and adaptively chooses the best performing configuration
thatmitigates the interference and balance on-chip network band-
width.

Kayiran et al. [98] showed that, in CPU–GPU heterogeneous
architecture, because of the high thread-level parallelism (TLP)
GPU cores execute, GPU applications may monopolize the shared
memory subsystem resources, such as interconnection network
and memory controller. That is, the higher TLP GPU core runs, the
more memory requests GPU generates. Thus, they proposed GPU
concurrency management that dynamically throttles/boosts TLP
(i.e., number of active warps) of GPU cores in order to minimize
shared resources interference between CPU and GPU. They pro-
posed two different schemes to control the interference. The first
scheme aims to reduce GPU concurrency, leading to some perfor-
mance loss in some GPU applications, in an attempt to mitigate
interference and improve CPU performance. The second proposed
scheme tries to improve both CPU and GPU performance by bal-
ancing the sharing between the running applications.

8. Future directions

GPUs continue to evolve as new applications arise or to make
executing current applications more efficient in terms of power
and performance. In this section, we will look at some of the
advances in GPU research that started now and are expected to
continue and evolve in the future.

8.1. GPUs and machine learning

With the increased popularity of applications dependent on
AI, more specifically machine learning, GPUs take more important
role. One subfield of machine learning that is gaining huge popu-
larity inmany domains is deep learning. Deep learning depends on

neural networks with large number of layers. The inner working
of deep neural networks involves updating the weights of inter-
connections among huge number of neurons. This operation can
be stated as matrix multiplication, which is a very GPU friendly
operation. As neural network becomes deeper, that is, with many
more layers, GPUs become more efficient due to the increased
data-parallelism. Updating the weights is very compute intensive
and is the learning part of a two phase operation: learning and
inference. GPU is the most efficient one in the learning part due
to the large amount of data parallelism, even though lately new
architectures are proposed for learning part, such as Google’s third
generation Tensor Processing Units (TPU) [96]. It is also good in
inference but has some competitors like Google’s TPUs,5 Microsoft
Catapult project based on FPGA [186] (and more recently project
brainwave), many startups that design custom silicon for infer-
ence, and, of course, traditional multicore processors.

Recently, NVIDIA introduced tensor cores in its newest GPU
architecture Volta [168] to speedup both inference and learning
phases. Tensor cores are included in SMs of the new GPU and
are programmable matrix-multiply-and-accumulate units. Each
tensor core can do: R = A∗B+C where A, B, C, and the result R are
all 4 × 4matrices. In the V100 GPU, for example, each SM contains
8 tensor cores. This increased tremendously the throughput of
both learning and inference. Many machine learning schemes do
not require high-precision floating point operations, unlike many
scientific simulations. This is why GPUs provide half-precision,
16-bit, floating point support.

Recent works have been proposed to improve deep learning
execution on GPUs. Diamos et al. [41] exploited the large size
of on-chip register files of modern GPU to cache the Recurrent
Neural Networks (RNN) parameters and reuse them over multiple
timesteps during training. Rhu et al. [192] proposed a runtime
memorymanager that virtualizes thememory usage of DNNs such
that it can utilize both GPU and CPU memory transparently for
training larger DNNs without burdening the programmer. Song
et al. [210], Yu et al. [267], Hill et al. [75] proposed novel techniques
to improve sparse deep learning inference on mobile GPUs.

There are many interesting research questions here. What are
other customized processing units or storages which can be added
to GPU and accelerate other emerging machine learning networks,
such as Sparsity in Convolution Networks inference [65,175], Long

5 First generation TPU was designed for inference. But subsequent generations
are targeting training too. However, comparing it to GPUs is a bit tricky. For
example, the 16-bit floating point formats for TPU and GPU are different.



M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 81

short-term memory (LSTM) [64], and Generative Adversarial Net-
works (GAN) [212]?

8.2. GPUs and approximate computing

Approximate computing is trading-off precision for effici-
ency [140,155,198]. Efficiency here can be higher performance,
lower power, or both. Not all applications require double precision
floating point, for example. Maxwell GPU, as an example, sacrifices
many double precision units for the sake of power and perfor-
mance. Approximate computing techniques can be software-based
or hardware-based.

At the software-side, in GPUs, there are techniques like using
fixed-point or low-precision floating point operations (fp16). At
the hardware side, inexact hardware is used in floating-point units
(FPU) and special function units (SFU) because they are consuming
large amount of power and affect performance. For instance, Li
et al. [140] proposed a software-based transparent SFU-driven
approximate acceleration on GPUs.

The above techniques, targeting GPUs, can be combined with
general approximate computing methods like reducing the num-
ber of iterations to calculate an average number, at the expense of
less precise solutions.

A future direction is to determine needed precision dynami-
cally. For example, reduce the precision dynamically when power
consumption reaches a specific threshold, in a way similar to
dynamic voltage and frequency scaling. Another challenge is when
multiple kernels are being executed on the device simultaneously
and each one needs a different solution quality. This requires a
smart scheduling to provide the needed quality-of-service within
the needed power or performance budget.

Because we are talking about multiple kernels, how about
multi-tenancy in GPUs?

8.3. GPUs and multi-tenancy

GPUs are now an integral part of datacenters and supercomput-
ers. Themain reason for that is the excellent performance per watt
GPUs have. In order to amortize the power consumed by GPUs,
high-utilization is a must. Besides the traditional tricks in coding,
for example streams in CUDA, scheduling different applications on
GPU through multi-tenancy is proposed [202]. In that work, the
authors propose to increase GPU utilization by servicing requests
from multiple tenants. The proposed scheme has several goals:
fairness to the different applications, meeting real-time deadlines,
and high throughput for the GPUs. The main idea is to have a two-
level software scheduling. The highest level distributes requests to
different GPUs to ensure load-balancing. The second level ensures
the efficient multiplexing of kernels assigned to a GPU. Scalability
of multi-tenancy to very large number is then a useful research
direction as datacenters scale-up to servemore andmore requests.
Further, as GPU is used by multiple tenants, security concerns are
raised. Naghibijouybari et al. [159] showed various covert channel
attacks are possible in modern GPUs. Building secure GPU that
ensures a complete isolation of the running applications without
sacrificing throughput is another important area of research.

8.4. GPUs and OS

The traditional way OS treats GPU is like an I/O device. This was
acceptable in the past when GPUs were just as their name says:
graphics processing units. Now, as GPUs are more general purpose,
this is becoming very inefficient. Treating GPUs as I/O devices and
not first-rate entity by the OS is that GPUs cannot access the file
system of a disk for example. It has to be done through the host,
which wastes a lot of time and bandwidth.

Table 11
Key characteristics of recent NVIDIA GPUs [168].

Fermi Kepler Maxwell Pascal Volta

#Cores 16 15 24 56 80
GFLOPS 1.3 5 6.8 10.6 15.7
Mem BW (GB/sec) 177 288 288 720 920
Mem cap (GB) 3 6 12 16 16
L2 cache (KB) 768 1536 3072 4096 6144
Transistors (B) 3 7.1 8.0 15.3 21.1
Tech. node (nm) 40 28 28 16 12
Chip size (mm2) 529 551 601 610 815

Authors in [205,227] present a compelling case for allowing
GPUs to use system calls. This way, GPUs will have access to many
features that were only available to the host CPUs. There are many
details to be resolved. However, this direction is certainly a needed
one.

Another important step in OS and GPU relationship is preemp-
tion. Starting from NVIDIA Pascal GPU, the OS can preempt the
compute task of the GPU at the instruction granularity instead
of the traditional thread-block granularity in older versions (e.g.
Kepler, Maxwell) [167].

There are many research directions that are needed to enhance
how the OS interacts with GPUs to achieve better and more effi-
cient overall performance.

8.5. Future GPUs and performance scalability

GPU applications with abundant parallelism available in exas-
cale applications (such as those found in deep learning and exas-
cale computing [229,232]) will see continuous performance im-
provement as the computational and
memory capabilities in the GPU increase. Table 11 shows the
scalability trend over Nvidia GPU generations [168]. As shown
in table, as we scale down in technology node, number of cores
keeps to increase over generations. The recent Volta architecture
contains 80 GPU cores in one gigantic chip that has 21 billion
transistors. However, in order tomaintain performance scalability,
building a larger GPU (beyond Volta) with dozens of GPU cores in
one monolithic chip may not be possible due to low manufacture
yield and high cost of building huge chips at small technology
nodes [16,229].

To address this issue, previous works [16,229] proposed parti-
tioning large monolithic GPUs into easily manufacturable chiplets
(a.k.a. GPU Chip Module) connected via high-speed, in-package
communication network. However, disintegration of GPU into
chiplets may lead to performance loss due to Non-Uniform Mem-
ory Access (NUMA) effect [16]. Addressing NMUA effect in chiplet-
based GPU architecture is challenging, especially in irregular
workloads wherein data accesses are randomly scattered over
chiplets’ memory modules [16,154,229].

Another key observation from Table 11 is thatmemory capacity
and speed do not scale at the same pace as performance. For
example, performance capability (GFLOPS) has increased 50% from
Pascal to Volta, whereas memory speed has only increased 25%
and memory capacity remains the same. As this trend continues
to grow in the future, the memory capacity and bandwidth will
become a major bottleneck for many workloads. High bandwidth
memory technologies [12] and employing heterogeneous mem-
ory [229] seem to be promising solutions to improve memory
scalability; however, more research are still required to reduce the
gap between GPU core and memory performance.



82 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

8.6. More tightly-coupled CPU+GPU integration

There have been a growing interest in improving the integration
of CPU and GPU. The aim of these works is to more tightly couple
CPU and GPU efficiently and use them in tandem as produce-
consumer model. Recently, OpenCL and CUDA have introduced
new features such as, shared virtual memory, memory coherence,
and system-wide atomics [58]. This opens new collaboration pat-
terns to allowCPUandGPU to communicate at fine-granularity and
allows more efficient execution flow and overlapping. However,
there is still a performance gap between the coherence and atomic
within GPU threads and between CPU and GPU threads. More
research are required to reduce this gap and improve CPU and GPU
communication.

9. Conclusion

Recent years have been witnessing the emergence of using
GPUs for general purpose computing due to their massive com-
putational power and energy efficiency. The ultimate goal of this
growing interest is to make GPUs a real general purpose many-
core accelerator that can be used side-by-side with CPU in or-
der to improve the performance of compute-intensive workloads
and reduce energy and power consumption. That is, to efficiently
utilize the emerging CPU–GPU heterogeneous architecture, we
need to execute the latency-sensitive portions of our programs
on CPUs and launch data-parallel portions on GPUs. To that end,
many issues need be addressed to rely on GPGPUs as a compelling
general purpose accelerator for the next power-limited big-data
era. In this paper, we survey architecture approaches which aim
to (1) improving the GPGPUs performance for emergence irregu-
lar workloads, (2) alleviating resource contention and efficiently
utilizing the memory subsystem bandwidth, (3) exploiting scalar
opportunities, increasing the available parallelism and enabling
concurrency, (4) enhancing GPGPU programmability, and (5) im-
proving the CPU–GPU integration. We strongly believe that this
survey paper will be insightful to the researcher into working on
improving GPU architecture for general purpose computing.

References

[1] Amir Ali Abdolrashidi, Devashree Tripathy, Mehmet Esat Belviranli,
Laxmi Narayan Bhuyan, Daniel Wong, Wireframe: supporting data-
dependent parallelism through dependency graph execution in gpus, in:
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, ACM, 2017, pp. 600–611.

[2] Jacob T. Adriaens, Katherine Compton, Nam Sung. Kim, Michael J. Schulte,
The case for gpgpu spatial multitasking, in: High Performance Computer
Architecture, HPCA, 2012 IEEE 18th International Symposiumon, IEEE, 2012,
pp. 1–12.

[3] N. Agarwal, D. Nellans, E. Ebrahimi, T.F. Wenisch, J. Danskin, S.W. Keckler,
Selective GPU caches to eliminate CPU–GPU HW cache coherence, in: 2016
IEEE International SymposiumonHigh Performance Computer Architecture,
HPCA, 2016, pp. 494–506.

[4] Neha Agarwal, DavidNellans,MikeO’Connor, StephenW. Keckler, Thomas F.
Wenisch, Unlocking bandwidth for GPUs in CC-NUMA systems, in: High
Performance Computer Architecture, HPCA, 2015 IEEE 21st International
Symposium on, 2015.

[5] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, S. Keckler,
Page placement strategies for GPUswithin heterogeneousmemory systems,
in: International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2015.

[6] P. Aguilera, K. Morrow, Nam Sung Kim, Qos-aware dynamic resource alloca-
tion for spatial-multitasking GPUs, in: Design Automation Conference (ASP-
DAC), 2014 19th Asia and South Pacific, 2014.

[7] P. Aguilera, K. Morrow, Nam Sung Kim, Fair share: Allocation of GPU re-
sources for both performance and fairness, in: Computer Design, ICCD, 2014
IEEE 32nd International Conference on, IEEE, 2014.

[8] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan,
Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, John Wickerson, GPU concur-
rency: weak behaviours and programming assumptions, in: Architectural
Support for Programming Languages and Operating Systems, ASPLOS’15,
2015 20th International Conference on, 2015.

[9] J. Alsop, M.S. Orr, B.M. Beckmann, D.A. Wood, Lazy release consistency
for GPUs, in: 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO, 2016, pp. 1–14.

[10] AMD, Graphics Core Next Arhcitecurewhitepaper, 2013, www.amd.com/us/
Documents/GCN_Architecture_whitepaper.pdf.

[11] AMD, AMD fusion kaveri, 2014, www.amd.com/ComputeCores/.
[12] AMD, High bandwidth memory, 2015, https://www.amd.com/Documents/

High-B{and}width-Memory-HBMpdf.
[13] AMD Evegreen, 2009, www.amd.com/us/products/desktop/graphics/ati-

radeon-hd-5000/.
[14] Jayvant Anantpur, R. Govindarajan, PRO: Progress aware GPUwarp schedul-

ing algorithm, in: Parallel and Distributed Processing Symposium, IPDPS,
2015 IEEE International, 2015.

[15] Manish Arora, Siddhartha Nath, Subhra Mazumdar, Scott Baden, Dean
Tullsen, Redefining the role of the CPU in the era of CPU–GPU integration,
in: IEEE Micro, 2012.

[16] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman
Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-Jean Wu, David Nellans, Mcm-
gpu: Multi-chip-module gpus for continued performance scalability, in:
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ACM, 2017, pp. 320–332.

[17] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,
Gabriel H. Loh, Onur Mutlu, Staged memory scheduling: Achieving high
performance and scalability in heterogeneous systems, in: Proceedings of
the 39th International Symposium on Computer Architecture, IEEE Press,
2012, pp. 416–427.

[18] Rachata Ausavarungnirun, Saugata Ghose, Onur Kayiran, Gabriel H. Loh,
Chita R. Das, Mahmut T. Kandemir, Onur Mutlu, Exploiting inter-warp het-
erogeneity to improve GPGPU performance, in: Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation Techniques,
PACT, PACT ’15, 2015.

[19] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata Ghose,
Jayneel Gandhi, Christopher J. Rossbach, OnurMutlu, Mosaic: a gpumemory
manager with application-transparent support for multiple page sizes, in:
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, ACM, 2017, pp. 136–150.

[20] Mihir Awatramani, Joseph Zambreno, Diane Rover, Increasing GPU through-
put using kernel interleaved thread block scheduling, in: Computer Design,
ICCD, 2013 IEEE 31st International Conference on, IEEE, 2013.

[21] Mihir Awatramani, Xian Zhu, Joseph Zambreno, Diane Rover, Phase aware
warp scheduling:Mitigating effects of phase behavior in gpgpu applications,
in: Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, PACT, PACT ’15, 2015.

[22] Ali Bakhoda, John Kim, Tor M. Aamodt, Throughput-effective on-chip net-
works for manycore accelerators, in: Proceedings of the 2010 43rd Annual
IEEE/ACM international symposium on Microarchitecture, IEEE Computer
Society, 2010, pp. pages 421–432.

[23] Ali Bakhoda, George L. Yuan,WilsonW.L. Fung, HenryWong, TorM. Aamodt,
Analyzing CUDAworkloads using a detailed GPU simulator, in: Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, 2009.

[24] Peter Bakkum, Kevin Skadron, Accelerating SQL database operations on a
GPU with CUDA, in: Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ACM, 2010, pp. 94–103.

[25] Nicolas Brunie, Sylvain Collange, Gregory Diamos, Simultaneous branch and
warp interweaving for sustained GPU performance, in: Proceedings of the
39th International Symposium on Computer Architecture, IEEE Press, 2012,
pp. 49–60.

[26] Daniel Cederman, Philippas Tsigas, Muhammad Tayyab Chaudhry, Towards
a software transactional memory for graphics processors, in: Proceedings of
the 10th Eurographics Conference on Parallel Graphics and Visualization, EG
PGV’10, 2010, pp. 121–129.

[27] Niladrish Chatterjee,MikeO’Connor, Gabriel H. Loh, Nuwan Jayasena, Rajeev
Balasubramonian, Managing DRAM latency divergence in irregular GPGPU
applications, in: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’14, 2014.

[28] Xuhao Chen, Li-Wen Chang, Christopher I. Rodrigues, Lv Ji, Zhiying Wang,
Wen mei Hwu, Adaptive cache management for energy-efficient GPU com-
puting, in: Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2014.

[29] Zhongliang Chen, David Kaeli, Norman Rubin, Characterizing scalar op-
portunities in GPGPU applications, in: Performance Analysis of Systems
and Software, ISPASS, 2013 IEEE International Symposium on, IEEE, 2013,
pp. 225–234.

[30] S. Chen, L. Peng, Improving GPU hardware transactional memory perfor-
mance via conflict and contention reduction, in: 201649thAnnual IEEE/ACM
International Symposium on Microarchitecture, MICRO, 2016.

[31] Sui Chen, Lu Peng, Samuel Irving, Accelerating gpu hardware transactional
memory with snapshot isolation, in: Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, ACM, 2017, pp. 282–294.

http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb1
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb2
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb2
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb2
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb2
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb2
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb2
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb2
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb7
http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/ComputeCores/
https://www.amd.com/Documents/High-B{and}width-Memory-HBMpdf
https://www.amd.com/Documents/High-B{and}width-Memory-HBMpdf
https://www.amd.com/Documents/High-B{and}width-Memory-HBMpdf
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb15
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb15
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb15
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb15
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb15
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb19
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb20
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb20
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb20
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb20
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb20
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb22
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb22
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb22
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb22
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb22
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb22
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb22
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb24
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb24
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb24
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb24
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb24
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb29
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb29
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb29
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb29
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb29
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb29
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb29
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb31
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb31
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb31
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb31
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb31


M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 83

[32] Guoyang Chen, Xipeng Shen, Free launch: Optimizing GPU dynamic kernel
launches through thread reuse, in: Proceedings of the 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture, 2015.

[33] Xuhao Chen, ShengzhaoWu, Li-WenChang,Wei-ShengHuang, Carl Pearson,
Zhiying Wang, Wen-Mei W. Hwu, Adaptive cache bypass and insertion
for many-core accelerators, in: Proceedings of International Workshop on
Manycore Embedded Systems, MES ’14, 2014.

[34] Hyojin Choi, Jaewoo Ahn, Wonyong Sung, Reducing off-chip memory traffic
by selective cache management scheme in GPGPUs, in: Proceedings of the
5th Annual Workshop on General Purpose Processing with Graphics Pro-
cessing Units, GPGPU-5, 2012.

[35] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, Ng
Andrew, Deep learning with COTS HPC systems, in: Proceedings of the 30th
International Conference on Machine Learning, 2013.

[36] Sylvain Collange, David Defour, Yao Zhang, Dynamic detection of uniform
and affine vectors in gpgpu computations, in: Euro-Par 2009–Parallel Pro-
cessing Workshops, Springer, 2010, pp. 46–55.

[37] Mayank Daga, Ashwin M. Aji, Wu-chun Feng, On the efficacy of a fused
CPU+GPUprocessor (or APU) for parallel computing, in: Application Acceler-
ators in High-Performance Computing, SAAHPC, 2011 Symposium on, IEEE,
2011, pp. 141–149.

[38] William J. Dally, The end of denial architecture and the rise of throughput
computing, in: Keynote Speech at Desgin Automation Conference, 2010.

[39] Jeffrey R. Diamond, Donald S. Fussell, Stephen W. Keckler, Arbitrary mod-
ulus indexing, in: Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014.

[40] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew
Kerr, Haicheng Wu, Sudhakar Yalamanchili, SIMD re-convergence at thread
frontiers, in: Proceedings of the 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture, ACM, 2011, pp. 477–488.

[41] Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski, Adam
Coates, Erich Elsen, Jesse Engel, Awni Hannun, Sanjeev Satheesh, Persistent
rnns: Stashing recurrent weights on-chip, in: International Conference on
Machine Learning, 2016.

[42] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero,
Alexander V. Veidenbaum, Improving cache management policies using
dynamic reuse distances, in: Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, IEEE Computer Society,
2012, pp. 389–400.

[43] A. ElTantawy, T.M. Aamodt, MIMD synchronization on SIMT architectures,
in: 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO, 2016, pp. 1–14.

[44] AhmedElTantawy, JessicaWenjieMa,MikeO’Connor, TorM. Aamodt, A scal-
able multi-path microarchitecture for efficient GPU control flow, in: High
Performance Computer Architecture, HPCA, 2014 IEEE 20th International
Symposium on, 2014.

[45] Sean Franey, Mikko Lipasti, Accelerating atomic operations on GPGPUs, in:
Networks on Chip, NoCS, 2013 Seventh IEEE/ACM International Symposium
on, IEEE, 2013, pp. 1–8.

[46] Wilson W.L. Fung, Tor M. Aamodt, Thread block compaction for efficient
SIMT control flow, in: High Performance Computer Architecture, HPCA, 2011
IEEE 17th International Symposium on, IEEE, 2011, pp. 25–36.

[47] Wilson W.L. Fung, Tor M. Aamodt, Energy efficient GPU transactional
memory via space–time optimizations, in: Proceedings of the 46th An-
nual IEEE/ACM International Symposium on Microarchitecture, ACM, 2013,
pp. 408–420.

[48] Wilson W.L. Fung, Ivan Sham, George Yuan, Tor M. Aamodt, Dynamic warp
formation and scheduling for efficient GPU control flow, in: Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
IEEE Computer Society, 2007, pp. 407–420.

[49] Wilson W.L. Fung, Ivan Sham, George Yuan, Tor M. Aamodt, Dynamic warp
formation: Efficient MIMD control flow on SIMD graphics hardware, ACM
Trans. Archit. Code Optim. (2009).

[50] Wilson W.L. Fung, Inderpreet Singh, Andrew Brownsword, Tor M. Aamodt,
Hardware transactional memory for GPU architectures, in: Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
ACM, 2011, pp. 296–307.

[51] V. Garcia, J. Gomez-Luna, T. Grass, A. Rico, E. Ayguade, A.J. Pena, Evaluat-
ing the effect of last-level cache sharing on integrated GPU-CPU systems
with heterogeneous applications, in: 2016 IEEE International Symposiumon
Workload Characterization, IISWC, 2016, pp. 1–10.

[52] Benedict R. Gaster, Derek Hower, Lee Howes, HRF-relaxed: Adapting HRF to
the complexities of industrial heterogeneous memory models, ACM Trans.
Archit. Code Optim. (2015).

[53] Benedict R. Gaster, Lee Howes, Can GPGPU programming be liberated
from the data-parallel bottleneck? in: IEEE Computer, vol. 45, IEEE, 2012,
pp. 42–52.

[54] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler,
William J. Dally, Erik Lindholm, Kevin Skadron, Energy-efficientmechanisms
for managing thread context in throughput processors, in: ACM SIGARCH
Computer Architecture News, vol. 39, ACM, 2011, pp. 235–246.

[55] Mark Gebhart, Stephen W. Keckler, Brucek Khailany, Ronny Krashinsky,
William J. Dally, Unifying primary cache scratch and register file memo-
ries in a throughput processor, in: Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, IEEE Computer
Society, 2012, pp. 96–106.

[56] Syed Zohaib Gilani, Nam Sung Kim, Michael. J. Schulte, Power-efficient
computing for compute-intensive gpgpu applications, in: Proceedings of
the 21st International Conference on Parallel Architectures and Compilation
Techniques, ACM, 2012, pp. 445–446.

[57] Syed Zohaib Gilani, Nam Sung Kim, Michael J. Schulte, Exploiting GPU
peak-power and performance tradeoffs through reduced effective pipeline
latency, in: Proceedings of the 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, ACM, 2013, pp. 74–85.

[58] Juan Gómez-Luna, Izzat El Hajj, Li-Wen Chang, Víctor García-Floreszx, Si-
mon Garcia de Gonzalo, Thomas B. Jablin, Antonio J. Pena, Wen-mei Hwu,
Chai: collaborative heterogeneous applications for integrated-architectures,
in: Performance Analysis of Systems and Software, ISPASS, 2017 IEEE Inter-
national Symposium on, IEEE, 2017, pp. 43–54.

[59] Chris Gregg, Jonathan Dorn, Kim Hazelwood, Kevin Skadron, Fine-grained
resource sharing for concurrent GPGPU kernels, in: Proceedings of the 4th
USENIX conference on Hot Topics in Parallelism, USENIX Association, 2012,
10–10.

[60] Chris Gregg, Kim Hazelwood, Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer, in: Performance Analysis of
Systems and Software, ISPASS, 2011 IEEE International Symposium on, IEEE,
2011, pp. 134–144.

[61] Beayna Grigorian, Glenn Reinman, Accelerating divergent applications on
simd architectures using neural networks, ACM Trans. Archit. Code Optim.
(2015).

[62] Zvika Guz, Evgeny Bolotin, Idit Keidar, Avinoam Kolodny, Avi Mendelson,
Uri C. Weiser, Many-core vs many-thread machines: Stay away from the
valley, Comput. Archit. Lett. 8 (1) (2009) 25–28.

[63] I.E. Hajj, J. Gomez-Luna, C. Li, L.W. Chang, D. Milojicic, W.m. Hwu, KLAP: Ker-
nel launch aggregation and promotion for optimizing dynamic parallelism,
in: 2016 49th Annual IEEE/ACM International Symposium onMicroarchitec-
ture, MICRO, 2016, pp. 1–12.

[64] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, et al., Ese: Efficient speech recognition
engine with sparse lstm on fpga, in: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ACM, 2017,
pp. 75–84.

[65] Song. Han, Huizi Mao, William J. Dally, Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding, 2015, arXiv preprint arXiv:1510.00149.

[66] Bingsheng. He, Wenbin. Fang, Qiong. Luo, Naga.K. Govindaraju, Tuyong.
Wang, Mars: a mapreduce framework on graphics processors, in: Proceed-
ings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[67] Blake A. Hechtman, Shuai. Che, Derek R. Hower, Yingying Tian, Bradford M.
Beckmann, Mark D. Hill, Steven K. Reinhardt, David A. Wood, QuickRelease:
a throughput oriented approach to release consistency onGPUs, in: Proceed-
ings of the 20th International Symposium on High Performance Computer
Architecture, HPCA, 2014.

[68] Blake A. Hechtman, Daniel J. Sorin, Exploring memory consistency for
massively-threaded throughput-oriented processors, in: Proceedings of the
40th International Symposium on Computer Architecture, ISCA, 2013.

[69] Blake A. Hechtman, Daniel J. Sorin, Evaluating cache coherent shared virtual
memory for heterogeneous multicore chips, in: Proceedings of the IEEE
International Symposiumon Performance Analysis of Systems and Software,
2013.

[70] John L. Hennessy, David A. Patterson, Computer Architecture, Fifth Edition:
A Quantitative Approach, fifth ed., Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2011, ISBN 012383872X, 9780123838728.

[71] Justin Hensley, Close to the Metal, in: Proceedings of SIGGRAPH, 2007,
pp. 120–130.

[72] Joel Hestness, Stephen W. Keckler, David A. Wood, GPU computing pipeline
inefficiencies and optimization opportunities in heterogeneous CPU–GPU
processors, in: Workload Characterization, IISWC, 2015 IEEE International
Symposium on, 2015.

[73] Joel Hestness, Stephen W. Keckler, David A. Wood, A comparative analysis
of microarchitecture effects on CPU and GPU memory system behavior, in:
Workload Characterization, IISWC, 2014 IEEE International Symposium on,
IEEE, 2014.

[74] Tayler H. Hetherington, Timothy G. Rogers, Lisa Hsu, Mike O’Connor, Tor M.
Aamodt, Characterizing and evaluating a key–value store application on
heterogeneous CPU–GPU systems, in: Performance Analysis of Systems
and Software, ISPASS, 2012 IEEE International Symposium on, IEEE, 2012,
pp. 88–98.

http://refhub.elsevier.com/S0743-7315(18)30866-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb37
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb37
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb37
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb37
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb37
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb37
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb37
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb42
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb45
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb45
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb45
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb45
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb45
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb46
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb46
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb46
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb46
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb46
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb47
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb47
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb47
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb47
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb47
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb47
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb47
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb48
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb48
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb48
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb48
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb48
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb48
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb48
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb49
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb49
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb49
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb49
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb49
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb50
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb50
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb50
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb50
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb50
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb50
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb50
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb52
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb52
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb52
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb52
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb52
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb53
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb53
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb53
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb53
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb53
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb54
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb54
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb54
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb54
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb54
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb54
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb54
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb55
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb56
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb56
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb56
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb56
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb56
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb56
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb56
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb57
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb57
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb57
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb57
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb57
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb57
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb57
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb58
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb59
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb59
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb59
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb59
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb59
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb59
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb59
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb60
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb60
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb60
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb60
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb60
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb60
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb60
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb61
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb61
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb61
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb61
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb61
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb62
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb62
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb62
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb62
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb62
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb64
http://arxiv.org/abs/1510.00149
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb70
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb70
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb70
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb70
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb70
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb73
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb73
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb73
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb73
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb73
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb73
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb73
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb74


84 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

[75] Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai, Chang-Hong Hsu,
Michael A. Laurenzano, Scott Mahlke, Lingjia Tang, Jason Mars, Deftnn:
addressing bottlenecks for dnn execution on gpus via synapse vector elim-
ination and near-compute data fission, in: Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture, ACM, 2017,
pp. 786–799.

[76] Anup Holey, Vineeth Mekkat, Antonia Zhai, HAccRG: Hardware-accelerated
data race detection in GPUs, in: Parallel Processing, ICPP, 2013 42nd Inter-
national Conference on, IEEE, 2013, pp. 60–69.

[77] Sunpyo Hong, Hyesoon Kim, An integrated gpu power and performance
model, in: ACM SIGARCH Computer Architecture News, vol. 38, ACM, 2010,
pp. 280–289.

[78] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R.
Gaster, Mark D. Hill, Steven K. Reinhardt, David A. Wood, Heterogeneous-
race-free memory models, in: Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, APLOS, ACM, 2014, pp. 427–440.

[79] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar, O.
Mutlu, S.W. Keckler, Transparent Offloading and Mapping (TOM): Enabling
programmer-transparent near-data processing in GPU systems, in: 2016
ACM/IEEE 43rd Annual International Symposiumon Computer Architecture,
ISCA, 2016, pp. 204–216.

[80] Wen-mei W. Hwu, GPU Computing Gems Emerald Edition, Elsevier, 2011.
[81] Wen-mei W. Hwu, GPU Computing Gems Jade Edition, Morgan Kaufmann

Publishers Inc., 2011.
[82] Intel, Intel haswell cpu, 2014, http://www.intel.com/content/www/us/en/

processors/core/4th-gen-core-processor-family.html.
[83] Intel, Intel skylake, 2015, http://ark.intel.com/products/88195.
[84] James A. Jablin, Thomas B. Jablin, Onur Mutlu, Maurice Herlihy, Warp-

aware trace scheduling for GPUs, in: Proceedings of the 23rd Interna-
tional Conference on Parallel Architectures and Compilation, ACM, 2014,
pp. 163–174.

[85] Hyunjun Jang, Jinchun Kim, Paul Gratz, Ki Hwan Yum, Eun Jung Kim,
Bandwidth-efficient on-chip interconnect designs for GPGPUs, in: Design
Automation Conference, DAC, 2015 52nd ACM/EDAC/IEEE, 2015.

[86] Min Kyu Jeong, Mattan Erez, Chander Sudanthi, Nigel Paver, A QoS-aware
memory controller for dynamically balancing GPU and CPU bandwidth
use in an MPSoC, in: Proceedings of the 49th Annual Design Automation
Conference, 850–855, 2012.

[87] Wenhao Jia, Kelly A. Shaw,MargaretMartonosi, MRPB:Memory request pri-
oritization formassively parallel processors, in:High PerformanceComputer
Architecture, HPCA, 2014 IEEE 20th International Symposium on, 2014.

[88] Wenhao Jia, Kelly A. Shaw, Margaret Martonosi, Characterizing and improv-
ing the use of demand-fetched caches in GPUs, in: Proceedings of the 26th
ACM international conference on Supercomputing, ACM, 2012, pp. 15–24.

[89] Zhen Hang Jiang, Yunsi Fei, David Kaeli, A complete key recovery timing
attack on a gpu, in: High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on, 2016.

[90] N. Jing, J. Wang, F. Fan, W. Yu, L. Jiang, C. Li, X. Liang, Cache-emulated
register file: An integrated on-chip memory architecture for high perfor-
mance GPGPUs, in: 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO, 2016, pp. 1–12.

[91] Adwait Jog, Evgeny Bolotin, Zvika Guz, Mike Parker, Stephen W. Keckler,
Mahmut T. Kandemir, Chita R. Das, Application-aware memory system for
fair and efficient execution of concurrent gpgpu applications, in: Proceed-
ings of Workshop on General Purpose Processing Using GPUs, ACM, 2014,
p. 1.

[92] Adwait Jog, Onur Kayiran, Tuba Kesten, Ashutosh Pattnaik, Evgeny Bolotin,
Niladrish Chatterjee, Stephen W. Keckler, Mahmut T. Kandemir, Chita R.
Das, Anatomy of GPU memory system for multi-application execution, in:
Proceedings of the 1st International Symposium onMemory Systems, 2015.

[93] Adwai Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu,
Ravishankar Iyer, Chita R. Das, Orchestrated scheduling and prefetching for
GPGPUs, in: Proceedings of the 40th International Symposium on Computer
Architecture, ISCA, 2013.

[94] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, Chita R. Das,
OWL: cooperative thread array aware scheduling techniques for improving
GPGPU performance, in: Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages andOperating
Systems, ASPLOS, 2013.

[95] Hadi Jooybar, Wilson W.L. Fung, Mike O’Connor, Joseph Devietti, Tor M.
Aamodt, GPUDet: a deterministic GPU architecture, in: Proceedings of the
Eighteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS, ACM, 2013, pp. 1–12.

[96] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara. Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,

C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel
Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, AdrianaMaggiore, MaireMahony, KieranMiller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek,
Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing,Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, Doe Hyun Yoon, In-datacenter performance analysis of a tensor
processing unit, in: Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, ISCA ’17, ACM, New York, NY, USA, ISBN:
978-1-4503-4892-8, 2017, pp. 1–12, http://doi.acm.org/10.1145/3079856.
3080246.

[97] Onur Kayıran, Adwait Jog, Mahmut Taylan Kandemir, Chita Ranjan Das,
Neither more nor less: Optimizing thread-level parallelism for GPGPUs, in:
Proceedings of the 22nd International Conference on Parallel Architectures
and Compilation Techniques, IEEE Press, 2013, pp. 157–166.

[98] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata
Ausavarungnirun,Mahmut T. Kandemir, Gabriel H. Loh, OnurMutlu, Chita R.
Das, Managing GPU concurrency in heterogeneous architectures, in: Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2014.

[99] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland,
David Glasco, GPUs and the future of parallel computing,Micro 31 (5) (2011)
7–17.

[100] John H. Kelm, Daniel R. Johnson, William Tuohy, Steven S. Lumetta, Sanjay J.
Patel, Cohesion: A hybridmemorymodel for accelerators, in: Proceedings of
the 37th Annual International Symposium on Computer Architecture, ISCA
’10, 2010.

[101] Farzad Khorasani, Rajiv Gupta, Laxmi N. Bhuyan, Efficient warp execution
in presence of divergence with collaborative context collection, in: Pro-
ceedings of the 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture, 2015.

[102] KHRONOS Group, The opencl specification version 2.0, 2014, https://www.
khronos.org/registry/cl/specs/opencl-2.0.pdf.

[103] Emmett Kilgariff, Randima Fernando, The geforce 6 series GPU architecture,
in: ACM SIGGRAPH 2005 Courses, ACM, 2005, p. 29.

[104] Hyesoon Kim, Supporting virtual memory in GPGPU without supporting
precise exceptions, in: Proceedings of the 2012 ACM SIGPLANWorkshop on
Memory Systems Performance and Correctness, ACM, 2012, pp. 70–71.

[105] Ji Kim, Christopher Batten, Accelerating irregular algorithms on GPGPUs
using fine-grain hardware worklists, in: Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014.

[106] Gwangsun Kim, Jiyun Jeong, John Kim, Mark Stephenson, Automatically
exploiting implicit pipeline parallelism from multiple dependent kernels
for gpus, in: Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, 2016.

[107] Hanjoon Kim, John Kim, Woong Seo, Yeongon Cho, Soojung Ryu, Providing
cost-effective on-chip network bandwidth in GPGPUs, in: Computer Design,
ICCD, 2012 IEEE 30th International Conference on, 2012.

[108] Gwangsun Kim, Minseok Lee, Jiyun Jeong, John Kim, Multi-GPU system
design with memory network, in: Proceedings of the 2010 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014.

[109] Youngsok Kim, Jaewon Lee, Jae-Eon Jo, Jangwoo Kim, GPUdmm: A high-
performance andmemory-oblivious GPU architecture using dynamic mem-
orymanagement, in: High Performance Computer Architecture, HPCA, 2014
IEEE 20th International Symposium on, 2014.

[110] Yonggon Kim, Hyunseok Lee, John Kim, An alternative memory access
scheduling in manycore accelerators, in: Parallel Architectures and Com-
pilation Techniques, PACT, 2011 International Conference on, IEEE, 2011,
pp. 195–196.

[111] Y. Kim, J. Lee, D. Kim, J. Kim, ScaleGPU: GPU architecture for memory-
unaware GPU programming, Comput. Archit. Lett. PP (99) (2013) 1–1a.

[112] K. Kim, S. Lee, M.K. Yoon, G. Koo, W.W. Ro, M. Annavaram, Warped-
preexecution: A gpu pre-execution approach for improving latency hiding,
in: 2016 IEEE International Symposium on High Performance Computer
Architecture, HPCA, 2016, pp. 163–175b.

[113] Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, Christopher
Batten, Microarchitectural mechanisms to exploit value structure in SIMT
architectures, Proceedings of the 40th Annual International Symposium on
Computer Architecture, ISCA ’13, 2013, 130–141b.

[114] D.B. Kirk, W.H. Wen-mei, Programming Massively Parallel Processors: A
Hands-on Approach, Morgan Kaufmann, 2010.

[115] John Kloosterman, Jonathan Beaumont, MichaelWollman, Ankit Sethia, Ron
Dreslinski, Trevor Mudge, Scott Mahlke, WarpPool: Reducing congestion
with inter-warp coalescing for throughput processors, in: Proceedings of
the 2015 48th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2015.

http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb75
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb76
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb76
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb76
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb76
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb76
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb77
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb77
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb77
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb77
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb77
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb78
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb80
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb81
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb81
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb81
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html
http://ark.intel.com/products/88195
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb84
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb84
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb84
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb84
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb84
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb84
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb84
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb86
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb86
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb86
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb86
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb86
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb86
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb86
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb88
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb88
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb88
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb88
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb88
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb91
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb95
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb95
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb95
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb95
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb95
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb95
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb95
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb97
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb97
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb97
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb97
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb97
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb97
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb97
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb99
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb99
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb99
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb99
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb99
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb103
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb103
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb103
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb104
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb104
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb104
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb104
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb104
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb110
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb110
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb110
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb110
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb110
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb110
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb110
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb111
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb111
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb111
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb113
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb113
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb113
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb113
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb113
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb113
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb113
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb114
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb114
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb114


M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 85

[116] Rakesh Komuravelli, Matthew D. Sinclair, Maria Kotsifakou, Prakalp Sri-
vastava, Sarita V. Adve, Vikram S. Adve, Stash: Have your scratchpad and
cache it too, in: Proceedings of the 42nd Annual International Symposium
on Computer Architecture, ISCA ’15, 2015.

[117] Gunjae Koo, Yunho Oh, Won Woo Ro, Murali Annavaram, Access pattern-
aware cachemanagement for improving data utilization in gpu, in: Proceed-
ings of the 44thAnnual International SymposiumonComputer Architecture,
ACM, 2017, pp. 307–319.

[118] Nagesh B. Lakshminarayana, Jaekyu Lee, Hyesoon Kim, Jinwoo Shin, Dram
scheduling policy for gpgpu architectures based on a potential function,
Comput. Archit. Lett. 11 (2) (2012) 33–36.

[119] Ahmad Lashgar, Amirali Baniasadi, Ahmad Khonsari, Dynamic warp resiz-
ing: Analysis and benefits in high-performance SIMT, in: Computer Design,
ICCD, 2012 IEEE 30th International Conference on, IEEE, 2012, pp. 502–503.

[120] Ahmad Lashgar, AhmadKhonsari, Amirali Baniasadi, HARP:Harnessing inac-
tive threads in many-core processors, ACM Trans. Embedded Comput. Syst.
13 (3s) (2014) 114.

[121] Shin-Ying Lee, Akhil Arunkumar, Carole-JeanWu, CAWA: Coordinated warp
scheduling and cache prioritization for critical warp acceleration of GPGPU
workloads, in: Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ISCA ’15, 2015.

[122] Yunsup Lee, Vinod Grover, Ronny Krashinsky, Mark Stephenson, StephenW.
Keckler, Krste Asanovic, Exploring the design space of SPMD divergence
management on data-parallel architectures, in: Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture, 2014.

[123] Jaekyu Lee, Hyesoon Kim, TAP: A TLP-aware cache management policy for
a CPU–GPU heterogeneous architecture, in: High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International Symposium on, IEEE,
2012, pp. 1–12.

[124] M. Lee, G. Kim, J. Kim, W. Seo, Y. Cho, S. Ryu, iPAWS: Instruction-issue
pattern-based adaptive warp scheduling for GPGPUs, in: 2016 IEEE Inter-
national Symposium on High Performance Computer Architecture, HPCA,
2016, pp. 370–381.

[125] Yunsup Lee, Ronny Krashinsky, Vinod Grover, Stephen W. Keckler, Krste
Asanovic, Convergence and scalarization for data-parallel architectures, in:
Code Generation andOptimization, CGO, 2013 IEEE/ACM International Sym-
posium on, IEEE, 2013, pp. 1–11.

[126] Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, Richard Vuduc,
Many-thread aware prefetching mechanisms for GPGPU applications, in:
Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International Sym-
posium on, IEEE, 2010, pp. 213–224.

[127] Jaekyu Lee, Si Li, Hyesoon Kim, Sudhakar Yalamanchili, Adaptive virtual
channel partitioning for network-on-chip in heterogeneous architectures,
ACM Trans. Des. Autom. Electron. Syst. 18 (4) (2013) 48d.

[128] Jaekyu Lee, Si Li, Hyesoon Kim, Sudhakar Yalamanchili, Design space ex-
ploration of on-chip ring interconnection for a CPU–GPU heterogeneous
architecture, J. Parallel Distrib. Comput. 73 (12) (2013) 1525–1538.

[129] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, Scott Mahlke, Transparent
CPU–GPU collaboration for data-parallel kernels on heterogeneous systems,
in: Proceedings of the 22nd International Conference on Parallel Architec-
tures and Compilation Techniques, IEEE Press, 2013, pp. 245–256.

[130] Minseok Lee, Seokwoo Song, Joosik Moon, J. Kim, Woong Seo, Yeongon
Cho, Soojung Ryu, Improving GPGPU resource utilization through alterna-
tive thread block scheduling, in: High Performance Computer Architecture,
HPCA, 2014 IEEE 20th International Symposium on, 2014, 260–271b.

[131] Jeyull Lee, Dong-Gyun Woo, Heonhwan Kim, Mani Azimi, GREEN cache:
Exploiting the disciplined memory model of opencl on GPUs, IEEE Trans.
Comput. (2015).

[132] Shin-Ying Lee, Carole-JeanWu, CAWS: Criticality-awarewarp scheduling for
GPGPU workloads, in: Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14, 2014.

[133] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani,
Nam Sung Kim, Tor M. Aamodt, Vijay Janapa Reddi, Gpuwattch: enabling
energy optimizations in gpgpus, in: ACM SIGARCH Computer Architecture
News, vol. 41, ACM, 2013, pp. 487–498.

[134] Dongdong Li, Tor M. Aamodt, Inter-core loclaity aware memory scheudling,
Comput. Archit. Lett. (2015).

[135] Ang Li, Gert-Jan van den Braak, Akash Kumar, Henk Corporaal, Adaptive
and transparent cache bypassing for gpus, in: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, ACM, 2015, p. 17.

[136] Ang Li,Weifeng Liu, LinnanWang, Kevin Barker, Shuaiwen Leon Song,Warp-
consolidation: A novel execution model for gpus, 2018.

[137] Dong Li, Minsoo Rhu, Daniel R. Johnson, Mike O’Connor, Mattan Erez, Doug
Burger, Donald S. Fussell, Stephen W. Keckler, Priority-based cache alloca-
tion in throughput processors, in: High Performance Computer Architecture,
HPCA, 2014 IEEE 21th International Symposium on, 2015.

[138] Chao Li, Shuaiwen Leon Song, HongwenDai, Albert Sidelnik, Siva Kumar Sas-
try Hari, Huiyang Zhou, Locality-driven dynamic GPU cache bypassing, in:
Proceedings of the 29th ACM on International Conference on Supercomput-
ing, 2015.

[139] Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, Henk
Corporaal, Corporaal locality-aware cta clustering for modern gpus, in: Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM, 2017,
pp. 297–311.

[140] Ang Li, Shuaiwen Leon Song, Mark Wijtvliet, Akash Kumar, Henk Corporaal,
Sfu-driven transparent approximation acceleration on gpus, in: Proceedings
of the 2016 International Conference on Supercomputing, ACM, 2016, p. 15.

[141] Ang Li, Wenfeng Zhao, Shuaiwen Leon Song, Bvf: enabling significant on-
chip power savings via bit-value-favor for throughput processors, in: Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, ACM, 2017.

[142] Jieun Lim, Hyesoon Kim, Design space exploration of memory model for
heterogeneous computing, in: Proceedings of the 2012 ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness, ACM, 2012,
pp. 74–75.

[143] Erik Lindholm,Mark J. Kilgard, HenryMoreton, A user-programmable vertex
engine, in: Proceedings of the 28th Annual Conference on Computer Graph-
ics and Interactive Techniques, ACM, 2001, pp. 149–158.

[144] Erik Lindholm, John Nickolls, Stuart Oberman, JohnMontrym, NVIDIA Tesla:
A unified graphics and computing architecture, Micro (2008).

[145] Jiwei Liu, Jun Yang, Rami Melhem, SAWS: Synchronization aware GPGPU
warp scheduling for multiple independent warp schedulers, in: Proceedings
of the 2015 48th Annual IEEE/ACM International Symposium onMicroarchi-
tecture, 2015.

[146] Chi-Keung Luk, Sunpyo Hong, Hyesoon Kim, Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping, in: Microarchitec-
ture, 2009 MICRO-42 42nd Annual IEEE/ACM International Symposium on,
IEEE, 2009, pp. 45–55.

[147] Daniel Lustig, Margaret Martonosi, Reducing GPU offload latency via fine-
grained CPU–GPU synchronization, in: High Performance Computer Ar-
chitecture, HPCA, 2013 IEEE 19th International Symposium on, 2013,
pp. 354–365.

[148] RomanMalits, Evgeny Bolotin, Avinoam Kolodny, Avi Mendelson, Exploring
the limits of gpgpu scheduling in control flow bound applications, in: ACM
Trans. Archit. Code Optim., vol. 8, 2012.

[149] Mengjie Mao, Jingtong Hu, Yiran Chen, Hai Li, VWS: a versatile warp sched-
uler for exploring diverse cache localities of GPGPU applications, in: De-
sign Automation Conference, DAC, 2015 52nd ACM/EDAC/IEEE, IEEE, 2015,
pp. 1–6.

[150] Vineeth Mekkat, Anup Holey, Pen-Chung Yew, Antonia Zhai, Managing
shared last-level cache in a heterogeneous multicore processor, in: Pro-
ceedings of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, PACT, IEEE Press, 2013, pp. 225–234.

[151] JiayuanMeng, JeremyW. Sheaffer, Kevin Skadron, Robust simd:Dynamically
adapted SIMD width and multi-threading depth, in: Parallel & Distributed
Processing Symposium, IPDPS, 2012 IEEE 26th International, IEEE, 2012,
pp. 107–118.

[152] Jiayuan Meng, David Tarjan, Kevin Skadron, Dynamic warp subdivision for
integrated branch and memory divergence tolerance, in: Proceedings of the
37th Annual International Symposium on Computer Architecture, ISCA ’10,
2010.

[153] Jaikrishnan. Menon, Marc De Kruijf, Karthikeyan Sankaralingam, iGPU: ex-
ception support and speculative execution on GPUs, in: Proceedings of the
39th International Symposium on Computer Architecture, ISCA, IEEE Press,
2012, pp. 72–83.

[154] Ugljesa Milic, Oreste Villa, Evgeny Bolotin, Akhil Arunkumar, Eiman
Ebrahimi, Aamer Jaleel, Alex Ramirez, David Nellans, Beyond the socket:
Numa-aware gpus, in: Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ACM, 2017, pp. 123–135.

[155] Sparsh Mittal, A survey of techniques for approximate computing, ACM
Comput. Surv. (ISSN: 0360-0300) 48 (4) (2016) 62:1–62:33, http://dx.doi.
org/10.1145/2893356.

[156] Sparsh Mittal, Jeffrey S. Vetter, A survey of methods for analyzing and
improving GPU energy efficiency, ACM Comput. Surv. (2014).

[157] Reza Mokhtari, Michael Stumm, S-L1: A software-based GPU L1 cache that
outperforms the hardware L1 for data processing applications, in: Proceed-
ings of the International Symposium on Memory Systems, MEMSYS ’15,
2015.

[158] Onur Mutlu, Jared Stark, Chris Wilkerson, Yale N. Patt, Runahead execution:
An alternative to very large instructionwindows for out-of-order processors,
in: High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceed-
ings. The Ninth International Symposium on, 2003, pp. 129–140.

[159] Hoda Naghibijouybari, Khaled N. Khasawneh, Nael Abu-Ghazaleh, Con-
structing and characterizing covert channels on gpgpus, in: Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
ACM, 2017, pp. 354–366.

[160] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhut-
dinov, Onur Mutlu, Yale N. Patt, Improving GPU performance via large
warps and two-level warp scheduling, in: Proceedings of the 44th An-
nual IEEE/ACM International Symposium on Microarchitecture, ACM, 2011,
pp. 308–317.

http://refhub.elsevier.com/S0743-7315(18)30866-9/sb117
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb117
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb117
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb117
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb117
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb117
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb117
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb118
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb118
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb118
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb118
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb118
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb119
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb119
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb119
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb119
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb119
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb120
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb120
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb120
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb120
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb120
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb123
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb123
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb123
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb123
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb123
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb123
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb123
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb125
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb125
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb125
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb125
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb125
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb125
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb125
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb126
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb126
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb126
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb126
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb126
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb126
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb126
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb127
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb127
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb127
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb127
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb127
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb128
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb128
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb128
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb128
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb128
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb129
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb129
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb129
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb129
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb129
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb129
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb129
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb131
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb131
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb131
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb131
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb131
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb133
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb133
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb133
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb133
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb133
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb133
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb133
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb134
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb134
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb134
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb135
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb135
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb135
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb135
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb135
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb135
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb135
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb136
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb136
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb136
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb139
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb140
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb140
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb140
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb140
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb140
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb141
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb141
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb141
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb141
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb141
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb141
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb141
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb142
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb142
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb142
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb142
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb142
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb142
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb142
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb143
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb143
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb143
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb143
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb143
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb144
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb144
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb144
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb146
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb146
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb146
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb146
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb146
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb146
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb146
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb148
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb148
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb148
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb148
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb148
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb149
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb149
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb149
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb149
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb149
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb149
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb149
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb150
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb150
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb150
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb150
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb150
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb150
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb150
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb151
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb151
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb151
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb151
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb151
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb151
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb151
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb153
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb153
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb153
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb153
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb153
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb153
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb153
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb154
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb154
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb154
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb154
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb154
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb154
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb154
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1145/2893356
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb156
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb156
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb156
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb159
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb159
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb159
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb159
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb159
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb159
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb159
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb160


86 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

[161] John Nickolls, William J. Dally, The GPU computing era, Micro 30 (2) (2010)
56–69.

[162] NVIDIA, Project Denver, 2011, http://blogs.nvidia.com/blog/2014/08/11/
tegra-k1-denver-64-bit-for-android/.

[163] NVIDIA, CUDA dynamic parallelism programming guide, 2014, http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[164] NVIDIA, NVIDIA GeForce GTX 980: Featuring Maxwell The Most Advanced
GPU Ever Made, 2014, http://international.download.nvidia.com/geforce-
com/international/pdfs/GeForce_GTX_980_Whitepaper_FINALPDF.

[165] NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture: Ke-
pler GK110, 2014, http://nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf.

[166] NVIDIA, CUDA C Programming guide v6.5, 2015, http://docs.nvidia.com/
cuda/pdf/CUDA_C_Programming_Guide.pdf.

[167] NVIDIA, Titanx, 2016, https://www.nvidia.com/en-us/geforce/products/
10series/titan-x-pascal/.

[168] NVIDIA TESLA V100 GPU architecture. White Paper, 2017, URL http:
//images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf.

[169] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W. Keckler, William J. Dally, Fine-grained dram: energy-
efficient dram for extreme bandwidth systems, in: Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, ACM,
2017, pp. 41–54.

[170] Lena E. Olson, Jason Power, David A. Wood, Mark D. Hill, Border control:
Sandboxing accelerators, in: Proceedings of the 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture, 2015.

[171] Marc S. Orr, Bradford M. Beckmann, Steven K. Reinhardt, David A. Wood,
Fine-grain task aggregation and coordination on GPUs, in: Proceeding of the
41st Annual International Symposium on Computer Architecuture, ISCA ’14,
2014.

[172] Marc S. Orr, Shuai Che, Ayse Yilmazer, Bradford M. Beckmann, Mark D.
Hill, David A. Wood, Synchronization using remote-scope promotion, in:
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’15,
2015.

[173] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,
Aaron E. Lefohn, Timothy J. Purcell, A survey of general-purpose compu-
tation on graphics hardware, in: Computer Graphics Forum, vol. 26, Wiley
Online Library, 2007, pp. 80–113.

[174] Sreepathi Pai, Matthew J. Thazhuthaveetil, R. Govindarajan, Improving
GPGPU concurrency with elastic kernels, in: Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ACM, 2013, pp. 407–418.

[175] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler,
William J. Dally, Scnn: An accelerator for compressed-sparse convolutional
neural networks, in: Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, ACM, 2017, pp. 27–40.

[176] Eunhyeok Park, Junwhan Ahn, Sungpack Hong, Sungjoo. Yoo, Sunggu Lee,
Memory fast-forward: a low cost special function unit to enhance energy
efficiency in GPU for big data processing, in: Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, 2015.

[177] Jason Jong Kyu Park, Yongjun Park, Scott Mahlke, ELF: maximizingmemory-
level parallelism for GPUs with coordinated warp and fetch scheduling, in:
Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2015, 2015.

[178] Jason Jong Kyu Park, Yongjun Park, Scott Mahlke, Chimera: Collaborative
preemption for multitasking on a shared GPU, 2015.

[179] Jason Jong Kyu Park, Yongjun Park, Scott Mahlke, Dynamic resource man-
agement for efficient utilization of multitasking gpus, in: Proceedings of
the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ACM, 2017, pp. 527–540.

[180] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra,
Mahmut T. Kandemir, Onur Mutlu, Chita R. Das, Scheduling techniques for
GPU architectures with processing-in-memory capabilities, in: Proceedings
of the 2016 International Conference on Parallel Architectures and Compi-
lation, 2016, pp. 31–44.

[181] Indrani Paul, Wei Huang, Manish Arora, Sudhakar Yalamanchili, Harmo-
nia: Balancing compute and memory power in high-performance gpus, in:
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, ISCA ’15, 2015.

[182] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T.C. Mowry, S.W. Keck-
ler, A case for toggle-aware compression for GPU systems, in: 2016 IEEE In-
ternational Symposium onHigh Performance Computer Architecture, HPCA,
2016, pp. 188–200.

[183] Bharath Pichai, Lisa Hsu, Abhishek Bhattacharjee, Architectural support for
address translation on GPUs: designing memory management units for
CPU/GPUs with unified address spaces, in: Proceedings of the 19th interna-
tional conference on Architectural support for programming languages and
operating systems, ACM, 2014, pp. 743–758.

[184] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beck-
mann, Mark D. Hill, Steven K. Reinhardt, David A. Wood, Wood heteroge-
neous system coherence for integrated CPU–GPU systems, in: Proceedings of
the 46th Annual IEEE/ACM International Symposium on Microarchitecture,
ACM, 2013, pp. 457–467.

[185] Jason Power, M. Hill, D. Wood, Supporting x86-64 address translation for
100s of GPU lanes, in: Proceedings of the 20th International Symposium on
High Performance Computer Architecture, 2014.

[186] AndrewPutnam, Fpgas in the datacenter: Combining theworlds of hardware
and software development, in: Proceedings of the on Great Lakes Sympo-
siumonVLSI 2017, GLSVLSI ’17, ACM,NewYork, NY, USA, ISBN: 978-1-4503-
4972-7, 2017, pp. 5–5, http://doi.acm.org/10.1145/3060403.3066860.

[187] Siddharth Rai, Mainak Chaudhuri, Exploiting dynamic reuse probability to
manage shared last-level caches in CPU–GPU heterogeneous processors, in:
Proceedings of the 2016 International Conference on Supercomputing, 2016,
pp. 3:1–3:14.

[188] Xiaowei Ren, Mieszko Lis, Efficient sequential consistency in gpus via rel-
ativistic cache coherence, in: High Performance Computer Architecture,
HPCA, 2017 IEEE International Symposium on, IEEE, 2017, pp. 625–636.

[189] Minsoo Rhu, Mattan Erez, Maximizing simd resource utilization in GPGPUs
with SIMD lane permutation, in: Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’13, 2013.

[190] Minsoo Rhu, Mattan Erez, The dual-path execution model for efficient GPU
control flow, in: Proceedings of the 2013 IEEE 19th International Symposium
on High Performance Computer Architecture, HPCA ’13, 201, pp. 591–602b.

[191] Minsoo Rhu, Mattan Erez, CAPRI: prediction of compaction-adequacy for
handling control-divergence in GPGPU architectures, in: Proceedings of the
39th International Symposium on Computer Architecture, IEEE Press, 2012,
pp. 61–71.

[192] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, StephenW.
Keckler, vdnn: Virtualized deep neural networks for scalable, memory-
efficient neural network design, in: The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, 2016.

[193] Minsoo Rhu, Michael Sullivan, Jingwen Leng, Mattan Erez, A locality-aware
memory hierarchy for energy-efficient GPU architectures, in: Proceedings of
the 46th Annual IEEE/ACM International Symposium on Microarchitecture,
ACM, 2013, pp. 86–98.

[194] Timothy Rogers, Daniel Johnson, Mike O’Connor, A variable warp size ar-
chitecture, in: Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ISCA ’15, 2015.

[195] Timothy G. Rogers, Mike O’Connor, Tor M. Aamodt, Cache-conscious wave-
front scheduling, in: Proceedings of the 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, IEEE Computer Society, 2012,
pp. 72–83.

[196] Timothy G. Rogers, Mike O’Connor, Tor M. Aamodt, Divergence-aware warp
scheduling, in: Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, ACM, 2013, pp. 99–110.

[197] Mehrzad Samadi, Amir Hormati, Janghaeng Lee, Scott Mahlke, Paragon:
collaborative speculative loop execution on GPU and CPU, in: Proceedings
of the 5th Annual Workshop on General Purpose Processing with Graphics
Processing Units, ACM, 2012, pp. 64–73.

[198] Mehrzad Samadi, Janghaeng Lee, D.A.noushe Jamshidi, Amir Hormati, Scott
Mahlke, SAGE: self-tuning approximation for graphics engines, in: Proceed-
ings of the 46th Annual IEEE/ACM International Symposium on Microarchi-
tecture, ACM, 2013, pp. 13–24.

[199] John Sartori, Rakesh Kumar, Branch and data herding: Reducing control
and memory divergence for error-tolerant GPU applications, IEEE Trans.
Multimed. 15 (2) (2013) 279–290.

[200] Vijay Sathish, Michael J. Schulte, Nam Sung Kim, Lossless and lossy memory
I/O link compression for improving performance of GPGPU workloads, in:
Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, ACM, 2012, pp. 325–334.

[201] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert.
Cavin, et al., Larrabee: a many-core x86 architecture for visual computing,
ACM Trans. Graph. (2008).

[202] D. Sengupta, A. Goswami, K. Schwan, K. Pallavi, Scheduling multi-tenant
cloud workloads on accelerator-based systems, in: SC14: International Con-
ference for High Performance Computing, Networking, Storage andAnalysis,
2014, pp. 513–524, http://dx.doi.org/10.1109/SC.2014.47.

[203] Ankit Sethia, Anoushe Jamshidi, Scott Mahlke, Mascar: Speeding up GPU
warps by reducing memory pitstops, in: High Performance Computer Ar-
chitecture, HPCA, 2015 IEEE 21th International Symposium on, 2015.

[204] Ankit Sethia, Mahlke Scott, Equalizer: Dynamic tuning of GPU resources
for efficient execution, in: Proceedings of the 47nd Annual 2014 IEEE/ACM
International Symposium on Microarchitecture, 2014.

[205] Mark Silberstein, Bryan Ford, EmmettWitchel, Gpufs: The case for operating
system services on gpus, Commun. ACM (ISSN: 0001-0782) 57 (12) (2014)
68–79, http://dx.doi.org/10.1145/2656206.

http://refhub.elsevier.com/S0743-7315(18)30866-9/sb161
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb161
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb161
http://blogs.nvidia.com/blog/2014/08/11/tegra-k1-denver-64-bit-for-android/
http://blogs.nvidia.com/blog/2014/08/11/tegra-k1-denver-64-bit-for-android/
http://blogs.nvidia.com/blog/2014/08/11/tegra-k1-denver-64-bit-for-android/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINALPDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINALPDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINALPDF
http://nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb169
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb173
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb173
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb173
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb173
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb173
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb173
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb173
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb174
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb174
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb174
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb174
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb174
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb174
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb174
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb175
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb178
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb178
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb178
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb179
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb179
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb179
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb179
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb179
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb179
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb179
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb183
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb184
http://doi.acm.org/10.1145/3060403.3066860
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb188
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb188
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb188
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb188
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb188
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb191
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb191
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb191
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb191
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb191
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb191
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb191
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb193
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb193
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb193
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb193
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb193
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb193
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb193
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb195
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb195
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb195
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb195
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb195
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb195
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb195
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb196
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb196
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb196
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb196
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb196
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb197
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb197
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb197
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb197
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb197
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb197
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb197
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb198
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb198
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb198
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb198
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb198
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb198
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb198
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb199
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb199
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb199
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb199
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb199
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb200
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb200
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb200
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb200
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb200
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb200
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb200
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb201
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb201
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb201
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb201
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb201
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb201
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb201
http://dx.doi.org/10.1109/SC.2014.47
http://dx.doi.org/10.1145/2656206


M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88 87

[206] Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve, Efficient GPU syn-
chronization without scopes: Saying no to complex consistency models, in:
Proceedings of the 2015 48th Annual IEEE/ACM International Symposiumon
Microarchitecture, 2015.

[207] Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve, Chasing away rats:
Semantics and evaluation for relaxed atomics on heterogeneous systems,
in: Proceedings of the 44th Annual International Symposium on Computer
Architecture, ACM, 2017, pp. 161–174.

[208] Abhayendra Singh, Shaizeen Aga, Satish Narayanasamy, Efficiently enforc-
ing memory ordering in GPUs, in: Proceedings of the 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture, 2015.

[209] Inderpreet Singh, Arrvindh Shriraman, Wilson W.L. Fung, Mike O’Connor,
Tor M. Aamodt, Cache coherence for GPU architectures, in: Proceedings of
the 20th International Symposium on High Performance Computer Archi-
tecture, HPCA ’13, 2013, pp. 578–590.

[210] Mingcong Song, Yang Hu, Huixiang Chen, Tao Li, Towards pervasive and
user satisfactory cnn across gpu microarchitectures, in: High Performance
Computer Architecture (HPCA), 2017 IEEE International Symposium on,
IEEE, 2017.

[211] Seokwoo Song, Minseok Lee, John Kim, Woong Seo, Yeongon Cho, Soojung
Ryu, Energy-efficient scheduling for memory-intensive GPGPU workloads,
in: Design, Automation and Test in Europe Conference and Exhibition, DATE,
IEEE, 2014, pp. 1–6.

[212] Mingcong Song, Jiaqi Zhang, Huixiang Chen, Tao Li, Towards efficient
microarchitectural design for accelerating unsupervised gan-based deep
learning, in: High Performance Computer Architecture, HPCA, 2018 IEEE
International Symposium on, IEEE, 2018, pp. 66–77.

[213] Tyler Sorensen, Ganesh Gopalakrishnan, Vinod Grover, Towards shared
memory consistency models for GPUs, in: Proceedings of the 27th inter-
national ACM conference on International conference on supercomputing,
ACM, 2013, pp. 489–490.

[214] Kyle L. Spafford, Jeremy S. Meredith, Seyong Lee, Dong Li, Philip C. Roth,
Jeffrey S. Vetter, The tradeoffs of fusedmemoryhierarchies in heterogeneous
computing architectures, in: Proceedings of the 9th conference on Comput-
ing Frontiers, ACM, 2012, pp. 103–112.

[215] Michael Steffen, Joseph Zambreno, Improving SIMT efficiency of global
rendering algorithmswith architectural support for dynamicmicro-kernels,
in: Microarchitecture, MICRO, 2010 43rd Annual IEEE/ACM International
Symposium on, IEEE, 2010, pp. 237–248.

[216] Sylvain Collange, Stack-Less SIMT Reconvergence at Low Cost, Technical
report, Technical Report HAL-00622654, INRIA, 2011.

[217] Sylvain Collange, Identifying Scalar Behavior in Cuda Kernels, Tech. Rep. hal-
00555134, INRIA, France, 2011.

[218] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro,
Mateo Valero, Enabling preemptive multiprogramming on GPUs, in: Pro-
ceedings of the 41th International Symposium on Computer Architecture,
ISCA, 2014.

[219] Ivan Tanasic, Isaac Gelado, Marc Jorda, Eduard Ayguade, Nacho Navarro,
Efficient exception handling support for gpus, in: Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, ACM,
2017, pp. 109–122.

[220] Xulong Tang, Ashutosh Pattnaik, Huaipan Jiang, Onur Kayiran, Adwait Jog,
Sreepathi Pai, Mohamed Ibrahim, Mahmut T. Kandemir, Chita R. Das, Con-
trolled kernel launch for dynamic parallelism in gpus, in: High Performance
Computer Architecture, HPCA, 2017 IEEE International Symposium on, IEEE,
2017, pp. 649–660.

[221] David Tarjan, Jiayuan Meng, Kevin Skadron, Increasing memory miss toler-
ance for SIMD cores, in: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ACM, 2009, p. 22.

[222] Chris J. Thompson, Sahngyun Hahn, Mark Oskin, Using modern graphics
architectures for general-purpose computing: a framework and analysis,
in: Proceedings of the 35th Annual ACM/IEEE International Symposium on
Microarchitecture, IEEE Computer Society Press, 2002, pp. 306–317.

[223] Yingying Tian, Sooraj Puthoor, Joseph L. Greathouse, BradfordM. Beckmann,
Daniel A. Jiménez, Adaptive GPU cache bypassing, in: Proceedings of the 8th
Workshop on General Purpose Processing Using GPUs, GPGPU 2015, 2015.

[224] Top500, 2015, http://www.top500org/lists/2015/11/.
[225] Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, Onur Mutlu,

Dash: Deadline-aware high-performance memory scheduler for heteroge-
neous systems with hardware accelerators, ACM Trans. Archit. Code Optim.
(2016).

[226] Aniruddha S. Vaidya, Anahita Shayesteh, Dong Hyuk. Woo, Roy Saharoy,
Mani Azimi, SIMD divergence optimization through intra-warp compaction,
in: Proceedings of the 40th Annual International Symposium on Computer
Architecture, ACM, 2013, pp. 368–379.

[227] J. Veselý, A. Basu, A. Bhattacharjee, G. Loh, M. Oskin, S.K. Reinhardt, GPU
system calls, May 2017, ArXiv e-prints.

[228] J. Vesely, A. Basu, M. Oskin, G.H. Loh, A. Bhattacharjee, Observations and
opportunities in architecting shared virtual memory for heterogeneous sys-
tems, in: 2016 IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS, 2016, pp. 161–171.

[229] Thiruvengadam Vijayaraghavany, Yasuko Eckert, Gabriel H. Loh, Michael J.
Schulte, Mike Ignatowski, Bradford M. Beckmann, William C. Brantley,
Joseph L. Greathouse, Wei Huang, Arun Karunanithi, et al., Design and
analysis of an apu for exascale computing, in: High Performance Computer
Architecture, HPCA, 2017 IEEE International Symposium on, IEEE, 2017,
pp. 85–96.

[230] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A.
Jog, P.B. Gibbons, O. Mutlu, Zorua: A holistic approach to resource virtual-
ization in GPUs, in: 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO, 2016, pp. 1–14.

[231] Nandita. Vijaykumar, Gennady. Pekhimenko, Adwait. Jog, Abhishek.
Bhowmick, Rachata. Ausavarungnirun, Chita. Das, Mahmut. Kandemir, Todd
C. Mowry, Onur. Mutlu, A case for core-assisted bottleneck acceleration in
GPUs: Enabling flexible data compression with assist warps, in: Proceedings
of the 42nd Annual International Symposium on Computer Architecture,
ISCA ’15, 2015.

[232] Oreste Villa, Daniel R. Johnson, Mike Oconnor, Evgeny Bolotin, David Nel-
lans, Justin Luitjens, Nikolai Sakharnykh, Peng Wang, Paulius Micikevicius,
Anthony Scudiero, et al., Scaling the power wall: a path to exascale, in:
High Performance Computing, Networking, Storage and Analysis, SC14:
International Conference for, IEEE, 2014, pp. 830–841.

[233] Dani Voitsechov, Yoav Etsion, Single-graph multiple flows: Energy effi-
cient design alternative for gpgpus, in: Computer Architecture, ISCA, 2014
ACM/IEEE 41st International Symposium on, 2014.

[234] Dani Voitsechov, Yoav Etsion, Control flow coalescing on a hybrid
dataflow/von Neumann GPGPU, in: Proceedings of the 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture, 2015.

[235] Yaohua Wang, Shuming Chen, Jianghua Wan, Jiayuan Meng, Kai Zhang, Wei
Liu, Xi Ning, A multiple SIMD multiple data (MSMD) architecture: Parallel
execution of dynamic and static SIMD fragments, in: Proceedings of the
20th International Symposium on High Performance Computer Architec-
ture, HPCA ’13, 201, pp. 603–614.

[236] Jin Wang, Norm Rubin, Albert Sidelnik, Sudhakar Yalamanchili, Dynamic
thread block launch: A lightweight execution mechanism to support irreg-
ular applications on GPUs, in: Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA ’15, 2015.

[237] J. Wang, N. Rubin, A. Sidelnik, S. Yalamanchili, LaPerm: Locality aware
scheduler for dynamic parallelism on GPUs, in: 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture, ISCA, 2016,
pp. 583–595a.

[238] Hao Wang, Ripudaman Singh, Michael J. Schulte, Nam Sung Kim, Memory
scheduling towards high-throughput cooperative heterogeneous comput-
ing, in: Proceedings of the 23rd International Conference on Parallel Archi-
tectures and Compilation, PACT ’14, 2014.

[239] Jin Wang, Sudhakar Yalamanchili, Characterization and analysis of dynamic
parallelism in unstructured GPU applications, in: Workload Characteriza-
tion, IISWC, 2014 IEEE International Symposium on, 2014.

[240] Z.Wang, J. Yang, R.Melhem, B. Childers, Y. Zhang,M.Guo, Simultaneousmul-
tikernel GPU:Multi-tasking throughput processors via fine-grained sharing,
in: 2016 IEEE International Symposium on High Performance Computer
Architecture, HPCA, 2016, pp. 358–369c.

[241] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang,
Minyi Guo, Simultaneous multikernel: Fine-grained sharing of GPGPUs,
Comput. Archit. Lett. (2015).

[242] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang,
Minyi Guo, Quality of service support for fine-grained sharing on gpus,
in: Proceedings of the 44th Annual International Symposium on Computer
Architecture, ACM, 2017, pp. 269–281.

[243] Bin Wang, Weikuan Yu, Xian-He Sun, Xinning Wang, DaCache: Memory
divergence-aware GPU cachemanagement, in: Proceedings of the 29th ACM
on International Conference on Supercomputing, ACM, 2015, pp. 89–98.

[244] Bin Wang, Yue Zhu, Weikuan Yu, OAWS: Memory occlusion aware warp
scheduling, in: Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, PACT ’16, 2016, pp. 45–55b.

[245] Henry Wong, Anne Bracy, Ethan Schuchman, Tor M. Aamodt, Jamison D.
Collins, Perry H. Wang, Gautham Chinya, Ankur Khandelwal Groen, Hong
Jiang, Hong Wang, Pangaea: a tightly-coupled IA32 heterogeneous chip
multiprocessor, in: Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, 2008.

[246] D. Wong, N.S. Kim, M. Annavaram, Approximating warps with intra-warp
operand value similarity, in: 2016 IEEE International Symposium on High
Performance Computer Architecture, HPCA, 2016, pp. 176–187.

[247] Dong Hyuk Woo, Hsien-Hsin S. Lee, COMPASS: a programmable data
prefetcher using idle GPU shaders, in: Proceedings of the Fifteenth Edition of
ASPLOS onArchitectural Support for Programming Languages andOperating
Systems, 2010.

[248] Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar Yala-
manchili, Srimat Chakradhar, Optimizing data warehousing applications for
GPUs using kernel fusion/fission, in: Parallel and Distributed Processing
Symposium Workshops & PhD Forum, IPDPSW, 2012 IEEE 26th Interna-
tional, IEEE, 2012, pp. 2433–2442.

http://refhub.elsevier.com/S0743-7315(18)30866-9/sb207
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb207
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb207
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb207
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb207
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb207
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb207
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb210
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb210
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb210
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb210
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb210
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb210
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb210
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb211
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb211
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb211
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb211
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb211
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb211
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb211
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb212
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb212
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb212
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb212
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb212
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb212
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb212
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb213
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb213
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb213
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb213
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb213
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb213
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb213
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb214
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb214
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb214
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb214
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb214
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb214
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb214
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb215
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb215
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb215
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb215
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb215
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb215
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb215
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb216
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb216
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb216
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb217
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb217
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb217
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb219
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb219
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb219
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb219
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb219
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb219
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb219
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb220
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb221
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb221
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb221
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb221
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb221
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb222
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb222
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb222
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb222
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb222
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb222
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb222
http://www.top500org/lists/2015/11/
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb225
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb225
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb225
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb225
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb225
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb225
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb225
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb226
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb226
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb226
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb226
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb226
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb226
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb226
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb227
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb227
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb227
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb229
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb232
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb241
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb241
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb241
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb241
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb241
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb242
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb242
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb242
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb242
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb242
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb242
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb242
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb243
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb243
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb243
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb243
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb243
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb248


88 M. Khairy, A.G. Wassal and M. Zahran / Journal of Parallel and Distributed Computing 127 (2019) 65–88

[249] Bo. Wu, Xu. Liu, Xiaobo. Zhou, Changjun Jiang, Flep: Enabling flexible and
efficient preemption on gpus, in: Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, ACM, 2017, pp. 483–496.

[250] Ping Xiang, Yi Yang, Mike Mantor, Norm Rubin, Lisa R. Hsu, Huiyang Zhou,
Michael Mantor, Norman Rubin, Exploiting uniform vector instructions
for gpgpu performance, energy efficiency, and opportunistic reliability en-
hancement, in: Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ACM, 2013, pp. 433–442.

[251] Ping Xiang, Yi Yang, Huiyang Zhou, Warp-level divergence in GPUs: Char-
acterization, impact, and mitigation, in: High Performance Computer Archi-
tecture, HPCA, 2014 IEEE 20th International Symposium on, 2014.

[252] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao Wang,
Dongrui Fan, Enabling coordinated register allocation and thread-level par-
allelism optimization for GPUs, in: Proceedings of the 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture, 2015.

[253] Xiaolong Xie, Yun Liang, Guangyu Sun, Deming Chen, An efficient compiler
framework for cache bypassing onGPUs, in: Computer-AidedDesign, ICCAD,
2013 IEEE/ACM International Conference on, 2013.

[254] Xiaolong Xie, Yun Liang, Yu Wang, Guangyu Sun, Tao Wang, Coordinated
static and dynamic cache bypassing for GPUs, in: High Performance Com-
puter Architecture, HPCA, 2015 IEEE 21st International Symposiumon, 2015.

[255] Q. Xu, H. Jeon, K. Kim, W.W. Ro, M. Annavaram, Warped-slicer: Efficient
intra-SM slicing through dynamic resource partitioning for GPU multipro-
gramming, in: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture, ISCA, 2016, pp. 230–242.

[256] Yunlong Xu, Rui Wang, Nilanjan Goswami, Tao Li, Lan Gao, Depei Qian, Soft-
ware transactionalmemory for GPU architectures, in: Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
ACM, 2014, p. 1.

[257] Yi Yang, Ping Xiang, Michael Mantor, Norman Rubin, Lisa Hsu, Qunfeng
Dong, Huiyang Zhou, A case for a flexible scalar unit in SIMT architecture,
in: Parallel and Distributed Processing Symposium, 2014 IEEE 28th Interna-
tional, IEEE, 2014, pp. 93–102.

[258] Y. Yang, P. Xiang, M. Mantor, N. Rubin, H. Zhou, Shared memory multi-
plexing: A novel way to improve GPGPU performance, in: Proceedings of
the 21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, 2012.

[259] Yi Yang, Ping Xiang, Mike Mantor, Huiyang Zhou, CPU-assisted GPGPU on
fused CPU–GPU architectures, in: High Performance Computer Architecture,
HPCA, 2012 IEEE 18th International Symposium on, IEEE, 2012, pp. 1–12.

[260] Amir Yazdanbakhsh, Jongse Park, Hardik Sharma, Pejman Lotfi-Kerman,
Hadi Esmaeilzadeh, Neural acceleration for gpu throughput processors, in:
Proceedings of the 2015 48th Annual IEEE/ACM International Symposiumon
Microarchitecture, 2015.

[261] Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi Es-
maeilzadeh, Onur Mutlu, Todd C. Mowry, RFVP: rollback-free value predic-
tion with safe-to-approximate loads, ACM Trans. Archit. Code Optim. 12 (4)
(2016) 62.

[262] A. Yilmazer, Zhongliang Chen, D. Kaeli, Scalar waving: Improving the effi-
ciency of simd execution on GPUs, in: Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, IEEE, 2014.

[263] Ayse Yilmazer, David Kaeli, HQL: A scalable synchronization mechanism for
GPUs, in: Parallel & Distributed Processing, IPDPS, 2013 IEEE 27th Interna-
tional Symposium on, IEEE, 2013, pp. 475–486.

[264] J. Yin, O. Kayiran, M. Poremba, N.E. Jerger, G.H. Loh, Efficient synthetic traffic
models for large, complex SoCs, in: 2016 IEEE International Symposium on
High Performance Computer Architecture, HPCA, 2016, pp. 297–308.

[265] M.K. Yoon, K. Kim, S. Lee, W.W. Ro, M. Annavaram, Virtual thread: Maximiz-
ing thread-level parallelismbeyond gpu scheduling limit, in: 2016ACM/IEEE
43rd Annual International Symposium on Computer Architecture, ISCA,
2016, pp. 609–621.

[266] Myung Kuk Yoon, Yunho Oh, Sangpil Lee, Seung Hun Kim, Deokho Kim,
Won Woo Ro, DRAW: Investigating benefits of adaptive fetch group size
on GPU, in: 2015 IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS, 2015.

[267] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna
Das, Scott Mahlke, Scalpel: Customizing dnn pruning to the underlying
hardware parallelism, in: ACMSIGARCHComputer ArchitectureNews, 2017.

[268] Yulong Yu, Weijun Xiao, Xubin He, He Guo, Yuxin Wang, Xin Chen, A stall-
aware warp scheduling for dynamically optimizing thread-level parallelism
in GPGPUs, in: Proceedings of the 29th ACM on International Conference on
Supercomputing, 2015.

[269] George L. Yuan, Ali Bakhoda, Tor M. Aamodt, Complexity effective memory
access scheduling for many-core accelerator architectures, in: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, ACM, 2009, pp. 34–44.

[270] Vitaly Zakharenko, Tor Aamodt, Andreas Moshovos, Characterizing the per-
formance benefits of fused CPU/GPU systems using FusionSim, in: De-
sign, Automation Test in Europe Conference Exhibition (DATE), 2013, 2013,
pp. 685–688.

[271] J. Zhan, O. Kay’ran, G.H. Loh, C.R. Das, Y. Xie, OSCAR: Orchestrating STT-
RAM cache traffic for heterogeneous CPU–GPU architectures, in: 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO,
2016, pp. 1–13.

[272] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, Xipeng Shen, On-the-fly
elimination of dynamic irregularities for GPU computing, in: Proceedings
of the Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ACM, 2011.

[273] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, S.W. Keckler, Towards
high performance paged memory for GPUs, in: 2016 IEEE International
Symposium on High Performance Computer Architecture, HPCA, 2016,
pp. 345–357.

[274] Z. Zheng, Z. Wang, M. Lipasti, Adaptive cache and concurrency allocation on
GPGPUs, Comput. Archit. Lett. PP (99) (2014).

[275] Jianlong Zhong, Bingsheng He, Kernelet: High-throughput GPU kernel ex-
ecutions with dynamic slicing and scheduling, IEEE Trans. Parallel Distrib.
Syst. (2013).

[276] Amir Kavyan Ziabari, José L. Abellán, Yenai Ma, Ajay Joshi, David Kaeli,
Asymmetric NoC architectures for gpu systems, in: Proceedings of the 9th
International Symposium on Networks-on-Chip, ACM, 2015, p. 25.

Mahmoud Khairy received his B.Sc. and M.Sc. in Com-
puter Engineering from Cairo University, Egypt. He is
currently a Ph.D. student with the Electrical and Com-
puter Engineering Department at Purdue University, US.
His research interests include GPGPU architecture, FP-
GAs, heterogeneous architecture and emerging memory
technologies.

Amr G. Wassal received his Ph.D. degree in Electrical
and Computer Engineering from the University ofWater-
loo, Ontario, Canada, in 2000. He has held several senior
technical positions in the industry at SiWare Systems,
PMC-Sierra, and IBM Technology Group. He is currently a
Professor with the Computer Engineering Department,
Cairo University. He has a number of conference and
journal papers and patent applications in the areas of
multi-core architectures and their applications in DSP
and sensor fusion.

Mohamed Zahran received his Ph.D. in Electrical and
Computer Engineering from University of Maryland at
College Park in 2003. He is currently a faculty member
with the Computer Science Department at NYU. His re-
search interest spans several aspects of computer archi-
tecture, such as architecture of heterogeneous systems,
hardware/software interaction, and biologically-inspired
architectures. Zahran is a senior member of IEEE, senior
member of ACM, and Sigma Xi scientific honor society.

http://refhub.elsevier.com/S0743-7315(18)30866-9/sb249
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb249
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb249
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb249
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb249
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb249
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb249
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb250
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb256
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb256
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb256
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb256
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb256
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb256
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb256
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb257
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb257
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb257
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb257
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb257
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb257
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb257
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb259
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb259
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb259
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb259
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb259
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb261
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb261
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb261
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb261
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb261
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb261
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb261
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb262
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb262
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb262
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb262
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb262
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb263
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb263
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb263
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb263
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb263
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb267
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb267
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb267
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb267
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb267
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb269
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb269
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb269
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb269
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb269
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb269
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb269
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb272
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb272
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb272
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb272
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb272
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb272
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb272
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb274
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb274
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb274
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb275
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb275
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb275
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb275
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb275
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb276
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb276
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb276
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb276
http://refhub.elsevier.com/S0743-7315(18)30866-9/sb276

	A survey of architectural approaches for improving GPGPU performance, programmability and heterogeneity
	Introduction
	BACKGROUND
	GPGPU Programming Model
	GPGPU Architecture
	GPU vs CPU design philosophy
	GPU Terminology

	Control Flow Divergence
	Regrouping Divergent Warps
	Large Warp/CTA compaction
	Multi-path Execution
	MIMD-like Architecture
	Dynamic Kernels/Threads
	Special Unit Accelerator
	Compiler- and Software-based Approaches

	Efficient Utilization of Memory Bandwidth
	Alleviating Cache Thrashing, and Resource Contention
	Two-level Warp Scheduling
	Coarse-grained CTA throttling
	Fine-grained Warp Throttling
	Throttling and Cache Bypassing
	Critical Warp Awareness
	Cache Management and Bypassing
	Ordering Buffers
	Resource Tuning

	High-bandwidth Many-Thread-Aware Memory Hierarchy 
	Mitigating Off-chip Bandwidth Bottleneck
	Memory Divergence Normalization
	Interconnection Network
	Main Memory Scheduling
	Heterogeneous Memory Management
	CPU–GPU Memory Transfer Overhead


	Increasing Parallelism and Improving Execution Pipelining
	Reducing Resource Fragmentation and Increasing Parallelism 
	GPU Multitasking 
	Exploiting Scalar and Value Similarity Opportunities 
	Improving Execution Pipelining 

	Enhancing GPGPU programmability
	Coherence and Consistency Model
	Transactional Memory
	Deterministic GPU
	Memory management

	CPU–GPU Heterogeneous Architecture
	Impacts of CPU–GPU integration 
	CPU–GPU Programmability 
	Exploiting Heterogeneity 
	Shared Resources Management

	Future Directions
	GPUs and Machine Learning
	GPUs and Approximate Computing
	GPUs and Multi-Tenancy
	GPUs and OS
	Future GPUs and performance scalability
	More Tightly-coupled CPU+GPU integration

	Conclusion
	References


