
Efficient Utilization of GPGPU Cache Hierarchy

Mahmoud Khairy
Computer Engineering
Cairo University, Egypt

makhairy@eng.cu.edu.eg

Mohamed Zahran
Computer Science

New York University, U.S.
mzahran@cs.nyu.edu

Amr G. Wassal
Computer Engineering
Cairo University, Egypt

wassal@eng.cu.edu.eg

ABSTRACT
Recent GPUs are equipped with general-purpose L1 and L2
caches in an attempt to reduce memory bandwidth demand
and improve the performance of some irregular GPGPU ap-
plications. However, due to the massive multithreading,
GPGPU caches suffer from severe resource contention and
low data-sharing which may degrade the performance in-
stead.

In this work, we propose three techniques to efficiently uti-
lize and improve the performance of GPGPU caches. The
first technique aims to dynamically detect and bypass mem-
ory accesses that show streaming behavior. In the second
technique, we propose dynamic warp throttling via cores
sampling (DWT-CS) to alleviate cache thrashing by throt-
tling the number of active warps per core. DWT-CS moni-
tors the MPKI at L1, when it exceeds a specific threshold,
all GPU cores are sampled with different number of active
warps to find the optimal number of warps that mitigates
thrashing and achieves the highest performance. Our pro-
posed third technique addresses the problem of GPU cache
associativity since many GPGPU applications suffer from
severe associativity stalls and conflict misses. Prior work
proposed cache bypassing on associativity stalls. In this
work, instead of bypassing, we employ a better cache index-
ing function, Pseudo Random Interleaving Cache (PRIC),
that is based on polynomial modulus mapping, in order to
fairly and evenly distribute memory accesses over cache sets.

The proposed techniques improve the average performance
of streaming and contention applications by 1.2X and 2.3X
respectively. Compared to prior work, it achieves 1.7X and
1.5X performance improvement over Cache-Conscious Wave-
front Scheduler and Memory Request Prioritization Buffer
respectively.

Categories and Subject Descriptors
C.1.4 [Computer System Organization]: Processor Ar-
chitecture—Parallel Architecture; B.3.2 [Memory Struc-
tures]: Design Style—Cache memories

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU-8 Feb 7, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3407-5/15/02 ...$15.00.

General Terms
Design, Performance

Keywords
Cache Management, GPGPU, Warp Throttling, Conflict-
avoiding, Cache Bypassing

1. INTRODUCTION
Throughput-oriented processors, such as General Purpose

Graphics processing Units (GPGPUs), have been widely
adopted for accelerating compute-intensive data-parallel ap-
plications due to their high computational power and energy
efficiency [5, 35, 4, 21, 8, 30]. However, GPGPU program-
ming is a difficult task. The programmer has to explicitly
manage the on-chip scratchpad memory to generate coa-
lesced memory accesses and exploit data locality[23, 36].
Further, it has been shown that the memory throughput
has become a limiting factor for many GPGPU applications
performance [21]. To address these issues, modern GPUs
[44, 33] are equipped with general purpose on-chip cache hi-
erarchy in an attempt to reduce off-chip memory bandwidth
demand, increase memory system throughput, improve the
performance of some irregular GPGPU applications and en-
hance the GPU programmability.

GPU cache size is very limited, compared to the number
of active threads GPU executes concurrently. For instance,
NVIDIA’s Fermi GPU [44] supports 1536 active threads per
core, and L1 cache size is configurable to 16KB or 48KB.
Thus, the average L1 cache capacity per thread is only 10
or 32 bytes, which is less than a single cache line size (=128
bytes). This behavior is also found in NVIDIA’s Kepler
GPU [33] that has 2048 active threads per core and a read-
only L1 data cache of size 48KB. This means that the GPU
cache is not designed to keep the per-thread working set,
as it is the case in CPU (for example, Intel core i7 CPU
[14] contains 2 threads per core, 32KB L1, thus 16KB per
thread). In fact, GPU caches were designed to exploit some
access patterns that exhibit small cache footprint per thread
and can fit in the cache (e.g. spilled registers, small-stride
access pattern [36] and inter-core data locality [33]). In case
GPGPU applications rely on caches to exploit data local-
ity and they contain a large cache footprint per-thread, the
active threads will compete on the few available cache lines
and the L1 cache will be susceptible to thrashing. Moreover,
the limited number of set associativity, typically between
4-6 [29], makes the L1 cache more vulnerable to associativ-
ity stalls and conflict misses. In addition, many GPGPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

GPGPU-8, February 7, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3407-5/15/02...$15.00
http://dx.doi.org/10.1145/2716282.2716291

36

applications use the scratchpad memory to exploit locality.
These applications show a streaming behavior when they
are cached. Cache management schemes that are unaware
of these streaming applications causes useless unintended
contention at L1 cache and this may hurt the performance
instead.

CTA throttling [20, 26], Warp throttling [39, 40, 27, 45],
FIFO buffer [18] and thrashing-resistant cache replacement
policy [6, 27, 7] are different techniques have been proposed
to alleviate cache thrashing, while cache bypassing [45, 27,
18] was proposed to mitigate the associativity stalls. How-
ever, many of these proposals address the cache thrashing
problem only, incur a considerable storage overhead and re-
quire significant changes to the baseline architecture. Fur-
ther, the proposed cache bypassing to handle associativity
stalls is not an effective method to efficiently utilize the avail-
able cache resources. In many cases, bypassing occurs while
cache sets are underutilized.

In this work, we propose a low-cost thrashing-resistant
conflict-avoiding streaming-aware GPGPU cache manage-
ment scheme that efficiently utilize the GPGPU cache re-
sources. The proposed method employs three techniques.
First, it dynamically detects and bypasses streaming appli-
cations that show streaming behavior in L1 or L2 cache. Sec-
ond, we propose dynamic warp throttling via cores sampling
(DWT-CS) to alleviate cache thrashing. DWT-CS moni-
tors the MPKI at L1, when it exceeds a specific threshold,
all GPU cores are sampled with different number of active
warps. Then, the active warps per all cores will be throttled
to the number of warps that is associated with the winner
core (the core achieved the highest performance during the
sampling period). Third, we employ a better cache index-
ing function, Pseudo Random Interleaving Cache (PRIC),
that is based on polynomial modulus mapping [38], to miti-
gate associatively stalls and eliminate conflict misses. PRIC
near-randomly and fairly distributes memory accesses over
cache sets and thus efficiently utilizing the cache resources.

This paper makes the following contributions:
1) We analyze and measure the amount of locality that

exist in GPGPU workloads by using a fully-associative un-
bounded caches. We show that many GPGPU applications
have large working set or poor cache reuse and don’t benefit
from the cache hierarchy, while other applications exhibit a
high level of cache thrashing and/or associativity contention.

2) We propose a low-cost thrashing-resistant conflict-avoiding
streaming-aware cache management scheme that addresses
all the problems associated with GPGPU caches.

3) Prior work proposed cache bypassing on associativity
stalls. In this work, instead of bypassing, we employ a better
cache indexing function, that is based on polynomial mod-
ulus mapping.

4) Compared to prior work, our method has simpler hard-
ware and achieves a harmonic mean 1.7X and 1.5X perfor-
mance improvement over Cache-Conscious Wavefront Sched-
uler (CCWS) and Memory Request Prioritization Buffer
(MRPB) respectively.

The rest of this paper is organized as follows, Section 2 de-
scribes our baseline architecture and methodology, Section 3
describes workload characterization, Section 4 describes our
proposed techniques, Section 5 presents the experimental re-
sults, Related works are discussed in Section 6, and Section
7 concludes.

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Interconnection Network

Memory
Partition

L2 Cache

MC

Thread Block Scheduler

.

Memory
Partition

L2 Cache

MC

Memory
Partition

L2 Cache

MC

.

Off-Chip
DRAM

Channel

Off-Chip
DRAM

Channel

Off-Chip
DRAM

Channel

.

Warp
Scheduler

Register File

Instruction Cache

.
Warp

Scheduler

Interconnection Network

Shared
Memory

SFUs

Memory
Unit

…
..

Execution Units

SIMD

SIMD

Texture
Cache

L1 Data
Cache

Constant
Cache

Figure 1: Baseline GPGPU Architecture

2. BACKGROUND AND BASELINE ARCHI-
TECTURE

2.1 GPGPU Programming Model
The CUDA [31] or OpenCL [34] programming model al-

lows the programmers to express the data level parallelism
in terms of fine-grain scalar threads. A typical GPGPU ap-
plication consists of multiple kernels (or grids). Each kernel
contains a group of thread blocks or cooperative thread ar-
ray (CTA). Each thread block is composed of 3-dimensional
scalar threads. Threads within the same thread block com-
municate with each other through a shared on-chip scratch-
pad memory and synchronization primitives. During run-
time, each consecutive 32 threads are grouped together to
formulate a warp (a.k.a. wavefront). Warps are executed
in a single instruction multiple-threads (SIMT) model. In
SIMT execution model: all threads within the same warp
execute the same PC (i.e. execute in a lock-step), threads
are allowed to follow different control flow paths and a long
memory latency is tolerated by a zero-overhead warp context
switching.

2.2 Baseline Architecture
Our baseline GPGPU, shown in Figure 1, consists of mul-

tiple GPU cores, named Streaming Multiprocessors (SMs),
1and a group of memory partitions. Each SM has its own
private L1 data cache, read-only texture cache, constant
cache and software-managed scratchpad memory, named sha-
red memory. They also contain a group of execution units,
such as single instruction multiple data units (SIMDs) and
special function units (SFUs). Each memory partition has
a slice of the L2 cache and a GDDR5 memory controller
that are shared among the SMs. The SMs and the memory
partitions are connected via an on-chip network.

A thread block scheduler, as shown in Figure 1, distributes
the thread blocks among SMs in a load-balanced round-robin
[2] fashion. Thread block is dispatched to a SM only if the re-
quired resources of the thread block are available on this SM

1In this paper, we use the terms GPU core and Streaming
Multiprocessors interchangeably.

37

Table 1: Simulated baseline GPGPU configuration
SM configuration 15 SMs, 700 MHZ, 1536 threads, 32

threads/warp, 48 warp/SM, SIMD
width = 32, 5-Stage Pipeline, 32684
registers

L1 Cache 16KB/4-way/128B/global-write-
evict-local-write-back/no-write-
allocate/allocate-on-miss/32
MSHR entries

L2 Cache 6 partitions x 128KB/16-way/128B
line/write-back/write-allocate/ 32
MSHR entries

Shared Memory 48 KB
Constant Cache 8KB
Texture Cache 12KB/24-way/128B line
Warp sched-
uler

2 per SM (24 warps per scheduler)

Warp scheduling Greedy-then-oldest (GTO) [39]
Branch Diver-
gence

PDOM [11]

Interconnect 1 crossbar/direction, 32B channel
width, 1400 MHZ

Memory Model 6 GDDR5 Memory Controllers
(MCs), First-Ready FCFS (FR-
FCFS) scheduling, 924 MHz,
BW=179.2 GB/s

GDDR5 Timing tCL=12, tRP=12, tRC=40,
tRAS=28, tRCD=12, tRRD=6

(e.g. register file, shared memory, warp scheduler entries,
etc.). Thread block are subdivided by hardware into warps.
Each SM contains a number of warp scheduler. The warp
scheduler employs a greedy-then-oldest (GTO) scheduling
policy. GTO runs a single warp until it stalls then picks
the oldest ready warp [39]. Our baseline handles control
flow divergence and re-convergence with a post dominator
(PDOM) re-convergence stack [11]. Each SM contains a
memory-coalescing unit that attempts to coalesce memory
requests of active threads within each warp into the fewest
possible cache line-sized memory requests.

2.3 Methodology
We simulate the baseline architecture using GPGPU-Sim

v3.2.1 [2], a publicly-available cycle-accurate GPGPU sim-
ulator. The GPU simulator is configured to be similar to
NVIDIA Fermi GTX480 [44]. We use the configuration file
provided with GPGPU-Sim without any modifications. The
configuration parameters are described in Table 1. The sim-
ulator was modified to implement the proposed techniques
that we evaluate in this work.

We considered a wide range of GPGPU CUDA work-
loads, including applications from Rodinia [3], Poly-Bench
[13] and NVIDIA SDK [32]. NN, IIX, SPMV S, and KM
are adopted from GPGPU-sim workloads [2], MapReduce
[16], SHOC [9], and CCWS applications suite [39] respec-
tively. In total, we study 22 applications described in Table
2. The applications run until completion, with the excep-
tion of SYRK, GESUMMV, and SCLUSTER, due to the
long simulation time of these applications, we execute SYRK
and GESUMMV only up to 100 million instructions, while
SCLUSTER up to 300 million instructions.

Table 2: GPGPU Workloads
Name Abbrev. Type
Black Scholes [32] BLK Streaming
Scalar Product [32] Sprod Streaming
Vector Addition [32] VAdd Streaming
Fast Walsh Transform[32] FWT Streaming
Needleman-Wunsch [3] NW Streaming
Hot Spot [3] HS Streaming
Separable Convolution [32] CONV Streaming
Structured grid [3] SRAD Conflict
3D Stencil [3] 3DS Conflict
2D Convolution [13] 2DCONV Conflict
2 Matrix Multiplication [13] MM Conflict
Stream Cluster [3] SCLUSTER Conflict
Breadth First Search [3] BFS Thrashing
Sparse Matrix Vec. Mult.[9] SpMV Thrashing
Inverted Index [16] IIX Thrashing
Kmeans Clustering [39] KM Thrashing
Symmetric Rank-k [13] SYRK Thr.+Conf.
Vector Matrix Multiply [13] GESUMMV Thr.+Conf.
MCARLO Pi Estimator [32] PEst Friendly
B+tree [3] B+tree Friendly
Back Propagation [3] BP Friendly
Neural Network [2] NN Friendly

3. WORKLOAD CHARACTERIZATION

3.1 Characterization Methodology
In order to understand the cache sensitivity of GPGPU

applications, we run our workloads in three different cache
scenarios: (1) totally bypassing all memory accesses (i.e.
no caches), (2) Bounded caches using the baseline config-
uration (16KB L1, 786KB L2) and (3) A fully-associative
unbounded caches (only cold misses occur in this scenario
and it represents the upper bound of performance improve-
ment from using caches). Note that, in unbounded caches,
the other cache resources (e.g. MSHRs) are still limited as
the baseline configuration and not increased. The results
are shown in Figure 2. Further, we analyze and measure
the amount of locality that exist in GPGPU workloads in
the bounded and unbounded scenarios. We classify locality
that occurs in GPPGU application to the following five cate-
gories: (1) Intra-warp data locality occurs when a cache line
is referenced and re-referenced by the same warp. we can
further divides the intra-warp locality into two subcategories
(intra-thread and inter-thread locality [39]). Intra-thread
occurs when a cache line is referenced and re-referenced by
the same thread, while inter-thread locality occurs when a
cache line is referenced and re-referenced by two different
threads within the same warp. (2) Intra-block data locality
occurs when a cache line is referenced and re-referenced by
two different warps within the same thread block. (3) Intra-
core data locality occurs when a cache line is referenced and
re-referenced by two different warps with different thread
blocks, and the two thread blocks are assigned to the same
core. (4) Inter-core data locality occurs when a cache line
is referenced and re-referenced by two different warps with
different thread blocks, and the two thread blocks are as-
signed to different cores. Obviously, this locality is only
exploited through L2 cache. (5) Inter-kernel data locality

38

0
1
2
3
4
5
6
7
8

N
or

m
al

iz
ed

 IP
C

Bypassing Bounded (16KBL1+786KBL2) Unbounded
37 38

Figure 2: Cache Sensitivity

Pe
r

Ki
lo

 C
yc

le
s

Pe

r
Ki

lo
 C

yc
le

s

(a) L1 Cache

(b) L2 Cache

0

1000

2000

3000

4000

5000

6000

IntraWarp IntraBlock IntraCore InterCore InterKernel Misses

0

500

1000

1500

2000

Figure 3: L1/L2 Data Locality Analysis. The left bar represents the locality found in unbounded caches while
right bar for bounded caches

0
200
400
600
800

1000
1200

B
LK

S
p

ro
d

V
A

d
d

F
W

T

N
W H
S

C
O

N
V

S
R

A
D

3
D

S

2
D

C
O

N
V

M
M

S
C

LU
S

T
E

R

B
F

S

S
P

M
V

_
S

II
X

K
M

S
Y

R
K

G
E

S
U

M
M

V

P
E

st

B
+

tr
e

e

B
P

N
N

LINE_ALLOC_FAIL MISS_QUEUE_FAIL MSHR_ENTRY_FAIL MSHR_MIX_ENTRY_FAIL

P
e

r
K

il
o

 C
yc

le
s

0

50

100

150

200

250

B
LK

S
p

ro
d

V
A

d
d

F
W

T

N
W H
S

C
O

N
V

S
R

A
D

3
D

S

2
D

C
O

N
V

M
M

S
C

LU
S

T
E

R

B
F

S

S
P

M
V

_
S

II
X

K
M

S
Y

R
K

G
E

S
U

M
M

V

P
E

st

B
+

tr
e

e

B
P

N
N

M
P

K
I

(a) L1 Reservation Fails Characterization (b) L1 Misses Per Kilo Instructions

Figure 4: L1 Cache Resource Contention

39

occurs when a cache line is referenced and re-referenced by
two different warps with different kernels. For instance, a
data was written by a kernel and a consecutive kernel ac-
cesses this data. Figure 3(a) and 3(b) show the amount and
type of locality in L1 and L2 respectively. The left bar rep-
resents the locality found in unbounded caches while right
bar for bounded caches. The L2 cache was evaluated while
L1 cache is bounded.

GPGPU workloads exhibit a high level of contention at
the few available L1 cache resources (e.g. MHSR entries,
cache lines and Miss Queue entries). When a cache miss oc-
curs, the miss status handling registers (MSHRs) are checked
to see whether the same request has already been issued
for another warp and is still pending. If the request was
found, a MSHR MIX entry is allocated to ensure the re-
turned request services both warps. If the request wasn’t
found in MSHRs, an empty MSHR entry is allocated, a
cache line is reserved and a read memory request is placed
in the Miss Queue. However, a cache controller may fail
to service a miss request due to lack of any requested re-
source (MSHR MIX ENTRY FAIL, MSHR ENTRY FAIL,
LINE ALLOC FAIL or MISS QUEUE FULL). In this case,
the memory request causes the pipeline to stall and it will
retry the next cycles until all the requested resources are
available. Figure 4(a) depicts the L1 reservation fails per kilo
cycles for our workloads and Figure 4(b) shows the misses
per kilo cycles (MPKI).

3.2 Characterization Results
From experimental results (shown in Figure 2, 3, and 4),

we classify our applications into three main categories:
(1) Streaming Applications: We observe that there are
applications that don’t benefit from caches at all (BLK,
Sprod, and VAdd). In these applications, caches hurt the
performance instead. As shown in Figure 2, using bounded
or unbounded caches leads to loss in performance compared
to bypassing. These applications show a streaming behavior
in both L1 and L2. They exhibit a high miss rate (up to
99%) in bounded and unbounded caches. For these appli-
cations, it is better to bypass their memory accesses since
they don’t benefit from caches and cause useless unintended
contention at L1 (see Figure 4(a)). For (FWT and NW),
the unbounded cache is better than bounded and bypassing.
These applications also show streaming behavior in bounded
and unbounded L1 cache. In contrast, they are full of inter-
kernel locality at unbounded L2, however bounded L2 is not
large enough to cache the data transferred between kernels.
In this work, we bypass these applications, and we leave im-
proving L2 cache to exploit inter-kernel locality for future
work. For (HS and CONV), they show a streaming behav-
ior in L1, while they exhibit a high hit rate at L2. They are
full of inter-core locality and thus they are L2 cache sensi-
tive. For these applications, it is better to bypass L1 cache
only. If we inspect the code of these workloads, we will find
that they rely on the on-chip scratchpad memory to exploit
locality. Thus, when they are cached, they show streaming
behavior in L1. It is worthwhile to note that, an application
that uses scratchpad, doesn’t necessarily show streaming be-
havior in L1. For instance, BP relies on scratchpad, however
it is full of locality.
(2) Cache Contention Applications: For these work-
loads, the unbounded cache is better than bounded and by-
passing by an order of magnitude (as shown in Figure 2 for

SCLUSTER, IIX, SYRK and others). These workloads are
full of data locality at the unbounded L1 (as shown in Fig-
ure 3(a)), however the limited size of bounded L1 cache and
the large number of threads GPGPU executes concurrently
makes it susceptible to conflict and capacity misses [17, 18].

Conflict misses mainly occur when a group of warps (Inter-
warp conflict contention) or a group of threads within the
same warp (Intra-warp conflict contention [18]) access the
same cache set within a short period of time. The warps/thr-
eads compete on the few available cache lines in cache set
(typically between 4-6 lines [29]). Consequently, it causes a
high level of LINE ALLOC FAIL stalls (associativity stalls).
Increasing the associativity of L1 cache is able to alleviate
this type of contention [18]. Capacity misses mainly occur
when the cache footprint per-warp is large (Inter-warp ca-
pacity contention). In this case, with no conflict contention
and L1 cache cannot fit all the running warps working set,
the warps will compete on the cache lines and the cache is
susceptible to thrashing. Cache thrashing causes a high level
of MSHR ENTRY FAIL stalls and MPKI. Increasing the L1
cache capacity is able to alleviate this type of contention
[18]. It has been shown that the code style has an effective
role to alleviate/increase cache contention [18]. Writing a
highly-divergent non-optimized code (mainly programs that
contain loops) may cause a severe cache contention [40].

The applications (SRAD, 3DS, 2DCONV, MM, and SCLUS-
TER) suffer from inter-warp conflict contention. As shown
in Figure 3, they are full of intra-warp and intra-block lo-
cality. However, the bounded L1 is not able to exploit
these localities, especially intra-block locality. Figure 4(a)
illustrates that these applications exhibit a high level of
LINE ALLOC FAIL stalls, which means that inter-warp con-
flict contention occurs in these workloads. The applications
(BFS, SPMV, IIX, and KM) suffer from inter-warp capac-
ity contention. They contain a large intra-warp locality.
Most of these locality are intra-thread (not shown in figure).
The running warps evict the cache lines of each other’s and
cause severe thrashing at L1 (see Figure 3(a)) and high lev-
els of MSHR ENTRY FAIL stalls (see Figure 4(a)). Figure
4(b) shows that these thrashing applications exhibit a high
level of MPKI over other applications. Hence, MPKI can
be used as a good measure to detect thrashing. The ap-
plications (SYRK and GESUMMV) suffer from intra-warp
conflict contention and inter-warp capacity contention. The
LINE ALLOC FAIL stalls and MPKI for these applications
are high. In section 4.3, we discuss the behavior of these
workloads in details. Note that, in thrashing applications,
the L2 cache backs up L1 evicted cache lines for future reuse,
except for GESUMMV. In GESUMMV, the cache footprint
per-warp is large to the extent that thrashing also occurs at
L2 (see Figure 3(b)).
(3) Cache-friendly Applications: For (Pest, B+tree,
BP, and NN), the bounded cache is much better than by-
passing and it nearly achieves the same performance of un-
bounded cache. They exhibit a high hit rate at both L1/L2
and L1 reservation fails is reasonable.

4. EFFICIENT UTILIZATION OF GPGPU
CACHES

In this section we describe our proposed methods to by-
pass streaming behavior, alleviate thrashing and avoid con-
flicts.

40

4.1 Dynamically Bypassing Streaming Appli-
cations

To address the streaming behavior problem, we dynam-
ically detect and bypass streaming applications. The pro-
posed method monitors the L1 cache miss rate over sam-
pling periods. At the end of each sampling period, it checks
whether the miss rate is larger than a specific threshold. If
so, the cache is disabled and all the memory accesses bypass
the L1 cache. We implement the same method for L2 caches.
Some workloads don’t show a constant behavior over time.
For instance, CONV shows a streaming behavior during the
first half of its execution time, then it shows a high hit rate
for the second half. To remedy this, our method leaves the
cache controller enabled during bypassing. The cache con-
troller updates tags only and calculates the new miss rate. If
the miss rate is less than the predefined threshold, the cache
is opened. While our method applies a coarse-grained cache
bypassing scheme (i.e. enable or disable the whole cache),
we leave building a fine-grained cache bypassing scheme for
future work.

4.2 Dynamic Warp Throttling via Cores Sam-
pling (DWT-CS)

Prior work [39, 40] proposed warp throttling as an effective
method to alleviate the cache thrashing problem. The num-
ber of active running warps per core is throttled to a lower
number such that their cache footprint can be fitted in cache.
Static Warp Throttling (SWT) (a.k.a. Best Static Warp
Limiting [39]) statically runs an exhaustive search to find
the best number of active warps that achieves the highest
performance. All possible warp numbers per warp scheduler
(24 to 1 in our case) were tested and the best performing one
is selected. In contrast, Dynamic Warp Throttling (DWT)
aims to find the best number of active warps dynamically by
hardware. Cache Conscious Wavefront Scheduling (CCWS)
[39] and Divergence-Aware Warp Scheduling (DAWS) [40]
are two proposed schemes to implement DWT. CCWS uses a
victim tag array, called lost locality detector, to detect warps
that have lost locality due to thrashing. These warps are
prioritized till they exploit their locality while other warps
are descheduled (not allowed to issue any load instructions).
DAWS introduced a divergence-based cache footprint pre-
dictor to estimate the amount of locality in loops required
by each warp. DAWS uses these predictions to prioritize a
group of warps such that the cache footprint of these warps
don’t exceed the capacity of the L1 cache.

CCWS and DAWS have a fine-grained control on warp
throttling (i.e. the number of active warps is variable over
time depending on the thrashing level). This gives them an
advantage over SWT. However, it has been shown that the
coarse-grained SWT approach has a comparable speedup to
CCWS and DAWS. SWT is able to outperform CCWS and
almost achieves the same performance of DAWS on average
[39]. This is due to the fact that many GPGPU applica-
tions show a consistent thrashing level over time. In addi-
tion, SWT tries to find the best trade-off number of warps
that works well at different thrashing levels and improves the
overall performance. However, SWT is not a practical solu-
tion. The programmer needs to do an exhaustive search for
each application. Moreover, SWT is input sensitive, which
means that the best number of warps changes when run-
ning the same application with different input sets [39]. In
this work, we propose Dynamic Warp Throttling via Cores

Table 3: The number of active warps (per warp
scheduler) achieved by SWT vs DWT-CS

Benchmark SWT DWT-CS
SPMV 1 1

Kmeans 1 1
BFS 5 7
IIX 2 2

SYRK 2 2
GESUMMV 1 1

Sampling (DWT-CS). DWT-CS uses a similar approach as
SWT (i.e. exhaustive searching), however it lets the hard-
ware handle the searching process. Thus, DWT-CS over-
comes SWT shortcomings. The idea of core sampling was
proposed by Lee et al. [25] by applying different cache man-
agement policies to different cores and collecting samples to
see how these policies behave. In this work, we employ a
similar mechanism to find the best number of active warps
that alleviates thrashing and efficiently utilizes L1 cache.

DWT-CS monitors the MPKI at L1 over sampling peri-
ods (from Figure 4(b), L1 MPKI can be used as a good
measure to detect thrashing). At the end of each sampling
period, it checks whether the MPKI has exceeded a specific
threshold for N consecutive periods. If so, all GPU cores
are sampled with different number of active warps, equals
to the core ID (For example, core#1 throttles the active
warps to only one warp, core#2: two active warps and so
on). After M sampling periods, all cores send the number
of instructions committed during the sampling periods to
the coordinator core (for example, the middle core, core#8
in our case). The coordinator core finds the core ID (i.e.
number of warps) that has executed the maximum number
of instructions. The winner core ID is propagated to all the
cores. Next, the cores throttle the number of active warps to
the new propagated value and it remains till the end of kernel
execution. In case, the winner core is the last core (core# 15
in our case), another sampling period is relaunched to test
the other numbers of warps (16-24). However, this case did
not occur in our benchmarks and it rarely exists. When the
same kernel is relaunched and MPKI exceeds the threshold,
it doesn’t sample the cores again. Instead, it uses the same
number of warps obtained before.

Table 3 shows the best number of active warps achieved
by SWT and DWT-CS. The DWT-CS is able to achieve the
same number of warps as SWT for all benchmarks except for
BFS which consists of small kernels and suffers from phased
execution (i.e. non-steady thrashing level).

Our proposed DWT-CS is a cost-effective method. It is
able to slightly outperform CCWS on average over thrashing
applications (see Section 5), while requiring negligible hard-
ware overhead. CCWS needs extra hardware (victim tag
arrays) to detect thrashing, whereas DWT-CS needs only
two counters to calculate the committed instructions and
cache misses in order to measure the MPKI over sampling
periods. A few registers are also needed to save the best
number of warps per-kernel for future reuse. Moreover, the
coordinator core can use one of the built-in SIMD units that
support MAX instruction [31] to find the winner core ID.
DWT-CS takes around 60K cycles to detect thrashing and
find the optimal number of warps. In real applications, this
overhead time can be neglected.

41

4.3 Pseudo Random Interleaved Cache (PRIC)
The problem of CPU cache associativity has been widely

studied in literature. Many works proposed different tech-
niques to improve the cache indexer function that is respon-
sible for interleaving memory accesses over cache sets. Prime
modulo interleaving [24, 22], 1-skew storage [15], logical data
skewing [41], Xor-based functions [42] and Pseudo Random
Interleaving [38] have been proposed, instead of the con-
ventional sequential interleaving, in an attempt to improve
cache associativity and avoid conflicts. It has been shown
that the Pseudo Random Interleaving Cache (PRIC) is a
cost-effective high-performance approach [38, 12, 43]. In
this work, we employ PRIC for GPU caches to alleviate as-
sociativity stalls and eliminate conflict misses.

In a sequential interleaving cache consisting of M = 2m

cache sets and a cache line size B = 2b bytes, a N-bit mem-
ory location whose address is A[N-1:0], has cache index of
A[m+b-1:b] and a Tag address A[N-1:m+b]. Figure 5(a)
depicts a simple example of how memory locations are in-
terleaved over cache sets in case of sequential interleaving.
In an application that generates a stream of M memory ref-
erences in a short period of time, with an access stride S,
has a n-way conflict degree where n=M/gcd(M,S), and gcd
stands for the greatest common divisor. From this equation,
we can observe that even strides will cause a high level of
conflict degree. For example, assume the sequential memory
interleaving shown in Figure 5(a), a reference stream with
an access stride of 2 (i.e. 0,2,4,6,8,10,12,14) has a 4-way con-
flict degree (i.e. all the memory references will be mapped
to only 4 cache sets out of 8). Each pair of the addresses
(0,8), (2,10), (4,12), (6,14) will map to the same cache set
and may cause associativity stalls (in case the cache set con-
tains cache lines less than mapped memory references). The
worst case scenario occurs when the reference sequence has a
stride which is a multiple of M, thus causing a 1-way conflict
where all references map to the same cache set. On the other
hand, all odd strides have no common divisor with M greater
than one (recall that M is a power-of-2 number) and hence
they don’t cause any conflicts and the memory references
will be distributed evenly over the cache sets. However, it is
important to note that even strides, especially strides that
are of multiple M, occur frequently in GPGPU applications.
For instance, Figure 6 shows a GPGPU frequent scenario to
access a 2-D matrix. In SYRK, the output element (i,j) is
calculated by multiplying row(i) by row(j) of matrix A. The
A matrix rows are aligned to the cache line size (i.e. row
size=K*line size) and are stored in a row-major order form
in the main memory. On each loop iteration, each 32 threads
within a warp read 32 elements from different consecutive
rows of matrix A. When K is a multiple of the number of
cache sets (32 in our baseline), all the memory reference
loads will map to the same cache set causing a high level of
associativity stalls and conflict misses. A matrix whose row
size equals 32*n*line size, where n>=1, frequently exists in
GPGPU applications.

In PRIC, as shown in Figure 5(b), each M consecutive
memory locations have different permutation over the cache
sets in a way that make them near-randomly interleaved.
This near-random interleaving makes PRIC resistant to all
strides, especially strides that are multiple of M. PRIC is
based on Polynomial Modulus Mapping in which the mem-
ory location, A, is expressed as a polynomial function whose
coefficients are in the Galios GF(2). For example, mem-

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0 4 2 6 1 5 3 7

13 9 15 11 12 8 14 10

23 19 21 17 22 18 20 16

26 30 24 28 27 31 25 29

35 39 33 37 34 38 32 36

46 42 44 40 47 43 45 41

52 48 54 50 53 49 55 51

57 61 59 63 56 60 58 62

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7

(a) Sequential Interleaving (b) Pseudo Random Interleaving

Figure 5: Memory locations interleaving over cache
sets (Assume 6-bit memory address, 1-byte cache
line and 8 cache sets)

(a) SYRK

//from SYRK
//element c(i,j) = row i*row j
int j = blockIdx.x * blockDim.x + threadIdx;
int i = blockIdx.y * blockDim.y + threadIdx;
int k;
for(k=0; k< M; k++)
{

c[i * N + j] += alpha * a[i * M + k] * a[j * M + k];
}

Thread 0
Thread 1

Thread 2

Thread 31

.

.

.

K * cache line

(b) A Matrix

Figure 6: An example of 1-way conflict degree in
SYRK workload. When K is multiple of the number
of cache sets, all 32 threads will map to the same
cache set

ory location 21 is expressed as (x4 + x2 + 1). Let P(x) be
a polynomial of order m, and A(x) be the polynomial of
order N that is associated with memory location A. Then
A(x) can be uniquely represented as A(x) = V(x)*P(x) +
R(x) where V(x) and R(X) are polynomials over GF(2) and
R(x) is of order less than m. V(x) and R(x) can be seen
as the polynomial representation of the corresponding tag
and cache index. Hence, the cache index of address R(x) =
A(x) mod P(x). It was found that for the best performance
and permutation, P(x) should be an Irreducible Polynomial
Function (I-Poly). P(x) is said to be irreducible if no two
non constant polynomials g(x) and h(x) with rational coeffi-
cients such that P(x)=g(x)*h(x) exists [28]. Rau [38] shows
how the computation of cache index R(x)=A(x) mod P(x)
can be carried out by the vector-matrix product of the ad-
dress and a matrix of single-bit coefficients, named H-matrix
(i.e. I[m-1:0] = A[N-1:b]*H-matrix). In GF(2), multiplica-
tion and addition are equivalent to AND and XOR boolean
function, and if the matrix is constant, the AND gates can
be omitted and the mapping then requires just XOR gates
with fan-in from 2 to n [12].

In our case, the baseline has 32 = 25 cache sets, thus
m=5. There are six irreducible polynomial functions of de-
gree 5 over GF(2) [28] and they are Poly (37, 41, 47, 55,
59, 61). In this study, we use Poly(37). The corresponding
Xor-ing boolean equations of Poly(37) is listed in Figure 7.
As shown in the figure, the cache index I[4:0] is generated
by Xor-ing some bits of the memory address A[31:0]. For
more information on the proofs and theorems behind the
polynomial modulus, as well as the method to generate the
H-matrix and Xor-ing equations, kindly refer to [38].

42

I0 = A25⊕A24⊕A23⊕A22⊕A21⊕A18⊕A17⊕A15⊕A12⊕A7

I1 = A26⊕A25⊕A24⊕A23⊕A22⊕A19⊕A18⊕A16⊕A13⊕A8

I2 = A26⊕A22⊕A21⊕A20⊕A19⊕A18⊕A15⊕A14⊕A12⊕A9

I3 = A23 ⊕A22 ⊕A21 ⊕A20 ⊕A19 ⊕A16 ⊕A15 ⊕A13 ⊕A10

I4 = A24 ⊕A23 ⊕A22 ⊕A21 ⊕A20 ⊕A17 ⊕A16 ⊕A14 ⊕A11

Figure 7: The Xor-ing equations corresponding to
Poly(37) that we use in the study

Recent works [45, 27, 18] proposed cache bypassing on
associativity stalls. However, these methods are not effec-
tive to efficiently utilize cache resources. In many cases,
bypassing occurs while the other cache sets are underuti-
lized. For instance, Memory Request Prioritization Buffer
(MRPB) [18] allows memory request that encounters asso-
ciativity stall (i.e. LINE ALLOC FAIL) to bypass L1 cache.
In SYRK workload shown in Figure 6(a), when all the 32
threads map to the same cache set, only the first four threads
will successfully allocate a cache line (assume 4-way asso-
ciativity) and the remaining 28 threads will bypass the L1
cache. This is because all the lines within the cache set will
be reserved by the first four threads. However, our empirical
search shows that the other cache sets are underutilized and
thus it is better to distribute the remaining threads over the
underutilized cache sets instead of bypassing. Moreover, on
the second iteration, the same 32 threads access the second
elements from the matrix rows and they will map to the
same cache set again. The first four threads hit the cache,
while the next four threads cause miss and consequently
they evict the previous threads cache lines. This behav-
ior is repeated over the next loop iterations, the first four
threads and the second four threads evict the lines of each
other. This behavior causes severe conflict misses for SYRK
and GESUMMV as shown in Figure 3(a). Hence, cache by-
passing is not an efficient method to handle the GPU cache
associativity problem.

5. EXPERIMENTAL RESULTS
We compare DWT-PRIC (i.e. bypassing streaming +

DWT-CS + PRIC) to previously proposed CCWS [39] and
MRPB [18]. We have discussed CCWS in section 4.2. CCWS
addresses the thrashing problem only and doesn’t consider
conflict contention. On the other hand, MRPB employs two
techniques to alleviate the thrashing and conflict problems.
First, a FIFO requests buffer is used to reorder memory ref-
erences so that requests from the same warp are grouped
and sent to the cache together and thus reducing the num-
ber of warps that access the cache at a time. Second, MRPB
allows memory request that encounters associativity stall to
bypass L1 cache. We have seen in section 4.3 that bypassing
strategy is not effective to handle cache associativity. Ta-
ble 4 presents the configuration parameters used for CCWS,
MRPB and DWT-PRIC. In CCWS, the value Kthrottle was
tuned to our baseline architecture by the same way described
in [39]. In MRPB, we use the same configuration in [18]
that achieved the highest performance. In DWT-PRIC, the

Table 4: CCWS/MRPB/DWT-PRIC Configuration
CCWS Config

Kthrottle 8
Victim Tag Array 8-way 16 entries per

warp (768 total entries)
Warp Base Score 100

MRPB Config
Signature warp ID (resulting in 48

queues)
Drain policy non-greedy-fixed-order
Buffer size 32 requests
Bypass option bypass-on-assoc-stalls

DWT-PRIC Config
Sampling Period 10K cycles
Miss rate threshold 90%
MPKI threshold 10
I-Poly Poly(37)

0

1

2

3

4

5

B
L
K

S
p

ro
d

V
A

d
d

F
W

T
N

W H
S

C
O

N
V

S
R

A
D

3
D

S
2

D
C

O
N

V
M

M
S

C
L
U

S
T

E
R

B
F

S
S

P
M

V
_

S
II

X
K

M
S

Y
R

K
G

E
S

U
M

M
V

P
E

st
B

+
tr

e
e

B
P

N
N

H
M

E
A

N
_

st
H

M
E

A
N

_
c
o

n
H

M
E

A
N

N
o

rm
a

li
ze

d
 I

P
C

6.1

21.1

16.8

Figure 8: Performance Improvement on all bench-
marks normalized to baseline

configuration parameters were selected based on empirical
analysis.

Figure 8 presents the performance improvement (Instruc-
tion Per Cycle) of our proposed methods (DWT-PRIC) on
all benchmarks with respect to baseline. DWT-PRIC achieves
a harmonic mean 1.54X performance improvement over base-
line. It improves the average performance of streaming and
contention applications by 1.2X and 2.3X respectively. Some
applications exhibit an improvement up to 21X (SYRK) and
16.8X (GESUMMV). In addition, it doesn’t cause any per-
formance degradation in the cache friendly applications.

Figure 9 illustrates the DWT-PRIC performance improve-
ment on cache contention applications with respect to base-
line, CCWS and MRPB. In total, DWT-PRIC outperforms
CCWS and MRPB by a harmonic mean 1.7X and 1.5X re-
spectively. For inter-warp conflict contention applications,
DWT-PRIC improves performance by a harmonic mean 2.1X
and 1.37X over CCWS and MRPB respectively, due to the
efficiency of PRIC in utilizing cache sets. For inter-warp
thrashing applications, DWT-PRIC results in a harmonic
mean 1.02X and 1.25X performance improvement over CCWS
and MRPB respectively. DWT-PRIC shows significant im-
provement on the applications that show consistent thrash-
ing level and coherent control flow divergence (IIX and KM).
On the other hand, CCWS slightly performs better in SPMV
and BFS due to the unsteady thrashing level of these appli-

43

0
1
2
3
4
5
6
7
8

N
o

rm
a

liz
e

d
 I

P
C

Baseline CCWS MRPB DWT-PRIC

21.1 16.8

Figure 9: Performance Improvement on Contention
Applications compared to CCWS and MRPB

0

25

50

75

100

M
is

s
ra

te
 %

Baseline DWT+PRIC Unbounded

Figure 10: L1 Miss Rate Reduction

cations. SPMV and BFS are highly control flow divergent
and thus the per-warp cache footprint changes over time
depending on warp’s active mask. DAWS [40] is a diver-
gence aware warp throttling mechanism that can improve
the performance of these applications further. For applica-
tions that exhibit both intra-warp conflict contention and
inter-warp thrashing, DWT-PRIC achieves a superior per-
formance improvement and outperforms CCWS and MRPB
by a harmonic mean 18X and 4X respectively. These work-
loads benefit from both DWT-CS and PRIC. Neither DWT-
CS alone nor PRIC alone is able to improve the performance
of these applications.

Figure 10 shows the reduction in L1 miss rate for DWT-
PRIC and unbounded cache compared to the baseline. More
than an 80% reduction is observed under DWT-PRIC for
3DS, KMN, SYRK and GESUMMV. Also, a miss rate re-
duction up to 60% is noticed for 2DCONV, MM and IIX.
Moreover, DWT-PRIC nearly achieves the same miss rate
of unbounded cache for SRAD, 3DS, 2DCONV and KM.

Figure 11 shows the reduction in L1 reservation fails per
kilo cycles for DWT-PRIC compared to the baseline. DWT-
PRIC reduces the reservation fails by 20% on average. Ap-
plications such as 2DCONV, KM, and GESUMMV show a
significant reduction (up to 90%). MM, IIX, and SYRK
also show a considerable reduction (up to 60%). In con-
trast, SCLUSTER and SRAD still show a high level of fails
PKC, especially MSHR ENTRY FAIL, due to the notice-
able streaming behavior of these application (up to 50% and
70% miss rate in unbounded cache, as shown in Figure 10).

Increasing the associativity of L1 cache is a straightfor-
ward approach to mitigate associativity stalls and conflict

0
100
200
300
400
500
600
700
800
900

1000

L1
 F

a
ils

 P
K

C

Baseline DWT+PRIC

Figure 11: L1 Reservation Fails Reduction

0

2

4

6

8

10

N
o

rm
a

liz
e

d
 I

P
C

4-way 16-way 32-way 64-way 4-way+PRIC Fully-Assoc

21 21 23 19 20

Figure 12: PRIC compared with High Associativity

misses. For instance, recent AMD’s Graphics Core Next
(GCN) GPUs [1] use 64-way associativity for their 16KB L1
caches. Figure 12 presents PRIC performance improvement
on inter-warp and intra-warp conflict contention applica-
tions with respect to high associativity and fully-associative
caches. In all cases, the L1 cache capacity is fixed and we as-
sume idealistic 1-cycle hit latency. PRIC with 4-way associa-
tivity outperforms the 16-way, 32-way, and 64-way caches by
a harmonic mean 1.6X, 1.4X, and 1.16X respectively. More-
over, PRIC is able to achieve 97% of fully-associative cache’s
performance. In addition to that, increasing associativity re-
quires a considerable hardware overhead (tag comparators
and large data selectors), which increasing both access la-
tency and power consumption [37].

6. RELATED WORK
Different methods have been proposed in literature to al-

leviate the problems associated with GPU caches. Table 5
summarizes and compares between these works in terms of
thrashing detection, thrashing handling and conflict stalls
mitigation. We can classify these works to the following:
(1) CTA throttling:
Jog et al. [19] proposed CTA-aware-locality scheduling that
gives a group of CTAs higher priority to keep their data in
the L1 cache such that they get the opportunity to reuse
it. Kayiran et al. [20] proposed dynamic CTA schedul-
ing, which attempts to allocate optimal number of CTAs
per-core in order to reduce contention in the memory sub-
system. Lee et al. [26] explored two alternative thread block
scheduling schemes. Lazy CTA scheduling was proposed to
leverage GTO scheduler to determine the optimal number of

44

Table 5: Related GPU Cache Contention Works
Thrashing
Detection

Thrashing
Handling

Conflict
stalls

OWL [19] – CTA throt-
tling

–

Dynamic
CTA [20]

memory
latency

CTA throt-
tling

–

Lazy CTA
[26]

#Instructions
issued under
GTO

CTA throt-
tling

–

CCWS [39] Victim cache Warp throt-
tling

–

DAWS [40] L1 footprint
prediction

Warp throt-
tling

–

PCAL [27] – Warp throt-
tling (CCWS)

Warp
Bypassing

CCA [45] L1 footprint
prediction

Warp throt-
tling (DAWS)

Warp
Bypassing

MRPB [18] – Memory
request prior-
itization

Bypassing
on stalls

G-Cache [7] Victims bits
at L2

adaptive by-
pass policy

–

CBWT [6] Victims bits
at L2

PDP cache
management

–

DWT+PRIC L1 MPKI Warp throt-
tling (DWT-
CS)

PRIC

CTAs per core. They also showed how block CTA schedul-
ing (BCS), where consecutive thread blocks are assigned to
the same cores, can exploit inter-block locality (i.e. intra-
core and inter-core locality). It is obvious that fine-grained
warp throttling mechanisms, such as DWT-CS, are better
than coarse-grained CTA throttling mechanisms. Based on
an experiment (not shown here), static warp throttling out-
performs static CTA throttling by 2X on average.

(2) Warp Throttling: In addition to the previously
discussed CCWS and DAWS, other recent works were pro-
posed to improve warp throttling. Li [27] observed that
throttling techniques leave memory bandwidth and other
chip resources (L2 cache, NOC and EUs) significantly under-
utilized. Thus, he proposed a cache bypassing scheme on top
of CCWS, called Priority-based Cache Allocation (PCAL).
PCAL starts from an optimal number of active warps, that
alleviates thrashing and conflicts, then extra inactive warps
are allowed to bypass cache and utilize the other on-chip
resources. Thus, PCAL reduces the cache thrashing and ef-
fectively employs the chip resources that would otherwise
go unused by a pure thread throttling approach. A similar
approach was proposed by Zheng et al. [45], called Adaptive
Cache and Concurrency (CCA). CCA improves DAWS by
allowing extra inactive warps and some streaming memory
instructions from the active warps to bypass the L1 cache
and utilize on-chip resources.

However, PCAL and CCA employ bypassing while leav-
ing cache sets underutilized. For example, recall the SYRK
example in section 4.3, PCAL throttles the number of ac-
tive warps that can access cache to only one warp and allows
two warps to bypass the cache in an attempt to utilize chip
resources. However, as we have seen, the cached warp only

utilizes one cache set, moreover it utilizes it in an inefficient
manner (the threads map to the same set causing severe
associativity stalls and conflict misses). In contrast, DWT-
PRIC effectively utilizes cache sets by allowing two warps to
access cache and fairly distributing their memory requests
over sets. Note that, PCAL or CCA can be employed on
top of our DWT-PRIC for further performance improvement
and efficient utilization of L1 cache sets as well as on-chip
resources.
(3) MRPB:
We have discussed MRPB in section 5. MRPB proposed
FIFO buffers to prioritize memory requests that are gener-
ated by the same warp. It also proposed cache bypassing
on associativity stalls and we have shown that the MRPB
bypassing mechanism is not an effective method.
(4) Cache Replacement Policy:
Chen et al. [7] proposed G-Cache to alleviate cache thrash-
ing. To detect thrashing, the tag array of L2 cache is en-
hanced with extra bits (victim bits) to provide L1 cache by
some information about the hot lines that have been evicted
before. An adaptive cache replacement policy is used by L1
cache to protect these hot lines. Chen [6] continued his work
and proposed Coordinated Bypassing and Warp Throttling
(CBWT). CBWT adopts a thrashing-resistant CPU cache
management scheme, Protection Distance Prediction (PDP)
[10], to GPU cache. PDP employs cache bypassing to en-
able protection on hot cache lines and thus alleviate cache
thrashing. Excessive bypassing may over-saturate the on-
chip network. Therefore, cache bypassing policy is coordi-
nated with a dynamic warp throttling mechanism to avoid
over-saturating on-chip resources. However, the previous
works don’t address the associativity problem and they em-
ploy cache replacement policy to alleviate thrashing, while
we use warp throttling mechanism.

7. CONCLUSION AND FUTURE WORK
Throughput processors, such as GPGPUs, rely on mas-

sive multithreading to hide long memory latency. However,
the high number of active threads GPGPU executes concur-
rently leads to severe cache thrashing and conflict misses. In
this work, we propose a low-cost thrashing-resistant conflict-
avoiding streaming-aware GPGPU cache management scheme
that efficiently utilizes the GPGPU cache resources and ad-
dresses all the problems associated with GPGPU caches.
The proposed method employs three orthogonal techniques.
First, it dynamically detects and bypasses streaming ap-
plications. Second, a Dynamic Warp Throttling via Cores
Sampling (DWT-CS) is proposed to alleviate cache thrash-
ing. DWT-CS runs an exhaustive searching over cores to
find the best number of warps that achieves the highest per-
formance. Third, we employ a better cache indexing func-
tion, Pseudo Random Interleaving Cache (PRIC), that is
based on polynomial modulus mapping, to mitigate associa-
tivity stalls and eliminate conflict misses.

Our proposed method improves the average performance
of streaming and contention applications by 1.2X and 2.3X
respectively. Compared to prior work, it achieves 1.7X and
1.5X performance improvement over CCWS and MRPB re-
spectively. Moving forward, we plan to explore a more so-
phisticated fine-grained bypassing mechanism. We also plan
to improve our DWT-CS to be more resistant to unstable
thrashing applications.

45

8. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and Mo-

hamed Hammad for their insightful feedback on this paper.
We also thank Wenhao Jia and Tim Rogers for generously
sharing the source code of MRPB and CCWS respectively.
Special thanks go to Ahmed ElTantawy for his assistance
with GPGPU-sim tool.

9. REFERENCES
[1] AMD. AMD’s Graphics Core Next Arhcitecure

whitepaper.

[2] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and
T. M. Aamodt. Analyzing CUDA workloads using a
detailed GPU simulator. In Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, 2009.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In Workload
Characterization, 2009. IISWC 2009. IEEE
International Symposium on.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A performance study of
general-purpose applications on graphics processors
using CUDA. Journal of parallel and distributed
computing, 68(10):1370–1380, 2008.

[5] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach.
Accelerating compute-intensive applications with
GPUs and FPGAs. In Application Specific Processors,
2008. SASP 2008. Symposium on, pages 101–107.
IEEE, 2008.

[6] X. Chen, L.-W. Chang, C. I. Rodrigues, L. Ji,
Z. Wang, and W. mei Hwu. Adaptive Cache
Management for Energy-efficient GPU Computing. In
Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 2014.

[7] X. Chen, S. Wu, L.-W. Chang, W.-S. Huang,
C. Pearson, Z. Wang, and W.-M. W. Hwu. Adaptive
cache bypass and insertion for many-core accelerators.
In Proceedings of International Workshop on
Manycore Embedded Systems, MES ’14, 2014.

[8] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai.
Single-chip heterogeneous computing: Does the future
include custom logic, FPGAs, and GPGPUs? In
Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
225–236. IEEE Computer Society, 2010.

[9] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith,
P. C. Roth, K. Spafford, V. Tipparaju, and J. S.
Vetter. The scalable heterogeneous computing
(SHOC) benchmark suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on
Graphics Processing Units, 2010.

[10] N. Duong, D. Zhao, T. Kim, R. Cammarota,
M. Valero, and A. V. Veidenbaum. Improving cache
management policies using dynamic reuse distances.
In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
389–400. IEEE Computer Society, 2012.

[11] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt.
Dynamic warp formation and scheduling for efficient
GPU control flow. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on
Microarchitecture, pages 407–420. IEEE Computer
Society, 2007.

[12] A. González, M. Valero, N. Topham, and J. M.
Parcerisa. Eliminating cache conflict misses through
XOR-based placement functions. In Proceedings of the
11th international conference on Supercomputing,
pages 76–83. ACM, 1997.

[13] S. Grauer-Gray, L. Xu, R. Searles,
S. Ayalasomayajula, and J. Cavazos. Auto-tuning a
high-level language targeted to GPU codes. In
Innovative Parallel Computing (InPar), 2012, 2012.

[14] L. Gwennap. Sandy Bridge spans generations.
Microprocessor Report, 9(27):10–01, 2010.

[15] D. T. Harper and J. R. Jump. Vector access
performance in parallel memories using a skewed
storage scheme. Computers, IEEE Transactions on,
1987.

[16] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. Mars: a MapReduce framework on graphics
processors. In Proceedings of the 17th international
conference on Parallel architectures and compilation
techniques.

[17] M. D. Hill and A. J. Smith. Evaluating associativity in
CPU caches. Computers, IEEE Transactions on, 1989.

[18] W. Jia, K. A. Shaw, and M. a. Martonosi. MRPB:
Memory Request Prioritization for Massively Parallel
Processors. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International
Symposium on, 2014.

[19] A. Jog, O. Kayiran, N. Chidambaram Nachiappan,
A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das. OWL: cooperative thread array aware
scheduling techniques for improving GPGPU
performance. In Proceedings of the eighteenth
international conference on Architectural support for
programming languages and operating systems
(ASPLOS), pages 395–406. ACM, 2013.

[20] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das.
Neither more nor less: Optimizing thread-level
parallelism for gpgpus. In Proceedings of the 22nd
international conference on Parallel architectures and
compilation techniques, pages 157–166. IEEE Press,
2013.

[21] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland,
and D. Glasco. GPUs and the future of parallel
computing. Micro, IEEE, 31(5):7–17, 2011.

[22] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using
prime numbers for cache indexing to eliminate conflict
misses. In Software, IEEE Proceedings-, 2004.

[23] D. Kirk and W. Wen-mei. Programming massively
parallel processors: a hands-on approach. Morgan
Kaufmann, 2010.

[24] D. H. Lawrie and C. R. Vora. The prime memory
system for array access. IEEE transactions on
Computers, 1982.

[25] J. Lee and H. Kim. Tap: A tlp-aware cache
management policy for a cpu-gpu heterogeneous
architecture. In High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International
Symposium on, pages 1–12, 2012.

46

[26] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho,
and S. Ryu. Improving GPGPU resource utilization
through alternative thread block scheduling. In High
Performance Computer Architecture (HPCA), 2014
IEEE 20th International Symposium on, pages
260–271, Feb 2014.

[27] D. Li. Orchestrating Thread Scheduling and Cache
Management to Improve Memory System Throughput
in Throughput Processors. PhD thesis, The University
Of Texas At Austin, May 2014.

[28] Mathworld.
mathworld.wolfram.com/IrreduciblePolynomial.html.

[29] R. Meltzer, C. Zeng, and C. Cecka.
Micro-benchmarking the C2070. In GPU Technology
Conference. Citeseer, 2013.

[30] J. Nickolls and W. J. Dally. The GPU computing era.
Micro, IEEE, 30(2):56–69, 2010.

[31] NVIDIA. CUDA C Programming Guide v5.5.

[32] NVIDIA. CUDA C/C++ SDK Code Samples.
http://developer.nvidia.com/cuda-cc-sdk-code-
samples.

[33] NVIDIA. NVIDIA Next Generation CUDA Compute
Architecture: Kepler GK110.

[34] OpenCL. The OpenCL Specification version 2.0.
http://www.khronos.org.

[35] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. GPU computing.
Proceedings of the IEEE, 96(5):879–899, 2008.

[36] Paulius Micikevicius. GPU Performance Analysis and
Optimization, 2012.

[37] M. K. Qureshi, D. Thompson, and Y. N. Patt. The
v-way cache: demand-based associativity via global

replacement. In Computer Architecture, 2005.
ISCA’05. Proceedings. 32nd International Symposium
on, 2005.

[38] B. R. Rau. Pseudo-randomly interleaved memory. In
Proceedings of the 18th Annual International
Symposium on Computer Architecture, ISCA ’91, 1991.

[39] T. G. Rogers, M. O’Connor, and T. M. Aamodt.
Cache-conscious wavefront scheduling. In Proceedings
of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 72–83. IEEE
Computer Society, 2012.

[40] T. G. Rogers, M. O’Connor, and T. M. Aamodt.
Divergence-aware warp scheduling. In Proceedings of
the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013.

[41] A. Seznec. A case for two-way skewed-associative
caches. In ACM SIGARCH Computer Architecture
News, pages 169–178. ACM, 1993.

[42] G. S. Sohi. Logical data skewing schemes for
interleaved memories in vector processors. 1988.

[43] N. Topham, A. González, and J. González. The design
and performance of a conflict-avoiding cache. In
Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, 1997.

[44] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi
GF100 GPU architecture. Micro, IEEE, 2011.

[45] Z. Zheng, Z. Wang, and M. Lipasti. Adaptive Cache
and Concurrency Allocation on GPGPUs. Computer

Architecture Letters, 2014.

47

