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Abstract—Contemporary data center servers process thou-
sands of similar, independent requests per minute. In the inter-
est of programmer productivity and ease of scaling, workloads
in data centers have shifted from single monolithic processes
toward a micro and nanoservice software architecture. As
a result, single servers are now packed with many threads
executing the same, relatively small task on different data.

State-of-the-art data centers run these microservices on
multi-core CPUs. However, the flexibility offered by traditional
CPUs comes at an energy-efficiency cost. The Multiple Instruc-
tion Multiple Data execution model misses opportunities to
aggregate the similarity in contemporary microservices. We
observe that the Single Instruction Multiple Thread execution
model, employed by GPUs, provides better thread scaling and
has the potential to reduce frontend and memory system energy
consumption. However, contemporary GPUs are ill-suited for
the latency-sensitive microservice space.

To exploit the similarity in contemporary microservices,
while maintaining acceptable latency, we propose the Request
Processing Unit (RPU). The RPU combines elements of out-
of-order CPUs with lockstep thread aggregation mechanisms
found in GPUs to execute microservices in a Single Instruction
Multiple Request (SIMR) fashion. To complement the RPU,
we also propose a SIMR-aware software stack that uses novel
mechanisms to batch requests based on their predicted control-
flow, split batches based on predicted latency divergence and
map per-request memory allocations to maximize coalescing
opportunities. Our resulting RPU system processes 5.7× more
requests/joule than multi-core CPUs, while increasing single
thread latency by only 1.44×.
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I. INTRODUCTION

The growth of hyperscale data centers has steadily
increased in the last decade, and is expected to continue in
the coming era of Artificial Intelligence and the Internet of
Things [1]. However, the slowing of Moore’s Law [2] has
resulted in energy [3], environmental [4], [5] and supply
chain [6] issues that has lead data centers to embrace
custom hardware/software solutions [7], [8].

While improving Deep Learning (DL) inference has re-
ceived significant attention [7], [9], general purpose compute
units are still the main driver of a data center’s total cost of
ownership (TCO). CPUs consume 60% of the data center
power budget [10], half of which comes from the pipeline’s
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Figure 1: Conceptual energy-efficiency vs. single thread
latency for different compute unit design points.

frontend (i.e. fetch, decode, branch prediction (BP), and Out-
of-Order (OoO) structures) [11]–[15]. Therefore; 30% of the
data-center’s total energy is spent on CPU instruction supply.

Coupled with the hardware efficiency crisis is an increased
desire for programmer productivity, flexible scalability and
nimble software updates that has lead to the rise of software
microservices. Monolithic server software has been largely
replaced with a collection of micro and nanoservices that
interact via the network [16]–[18]. Compared to monolithic
services, microservices spend much more time in network
processing [17], [19], have a smaller instruction and data
footprint [17], and can suffer from excessive context
switching due to frequent network blocking [16], [20]–[22].

To meet both latency and throughput demands,
contemporary data centers typically run microservices
on multicore, OoO CPUs with and without Simultaneous
Multithreading (SMT). Previous academic and industrial
work [20], [23]–[28] has shown that current CPUs are
inefficient in the data center as many on-chip resources are
underutilized or ineffective. To make better use of these
resources, on-chip throughput is increased [20], [25], [29]
by adding more cores and raising the SMT degree [30]–
[35]. Figure 1 visualizes the energy-efficiency and single
thread latency of different processor design points, logically
separated by their execution model. On the low-latency end
are OoO Multiple Instruction Multiple Data (MIMD) CPUs
with a low SMT-degree. Different CPU designs trade-off
single thread latency for energy-efficiency by increasing the
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Figure 2: High level view of our SIMR system.

SMT-degree and moving from OoO to in-order execution.
On the high-efficiency end are in-order Single Instruction
Multiple Thread (SIMT) GPUs that support thousands
of scalar threads per core. Fundamentally, GPU cores
are designed to support workloads where single-threaded
performance can be sacrificed for multi-threaded throughput.
However, we argue that the energy-efficient nature of the
GPU’s execution model and scalable memory system can be
leveraged by low-latency OoO cores, provided the workload
performs efficiently under SIMT execution. SIMT machines
aggregate scalar threads into vector-like instructions for
execution (i.e. a warp). To achieve high energy-efficiency,
the threads aggregated into each warp must traverse similar
control-flow paths, otherwise lanes in the vector units must
be masked off (decreasing SIMT-efficiency) and the benefits
of aggregation disappear.

We make the observation that contemporary microservices
exhibit a SIMT-friendly execution pattern. Data center nodes
running the same microservice across multiple requests
create a natural batching opportunity for SIMT hardware,
if service latencies can be met. Contemporary GPUs are
ill-suited for this task, as they forego single threaded
optimizations (OoO, speculative execution, etc.) in favor
of excessive multithreading. Prior work on directly using
GPU hardware to execute data center applications [36],
[37] reports up to 6000× [37] higher latency than the CPU.
Furthermore, accessing I/O resources on GPUs requires CPU
co-ordination [37]–[41] and GPUs do not support the rich
set of programming languages represented in contemporary
microservices [17], hindering programmer productivity.

SIMT-on-SIMD compilers, like Intel ISPC [42], provide
a potential path to run SIMT-friendly microservices on
CPU SIMD units. This method has the potential to achieve
high energy efficiency while leveraging some of the CPU
pipeline’s latency optimizations by assigning each thread to
a SIMD lane. However, this approach has several drawbacks.
First, each microservice thread requires more register file
and cache capacity than work typically assigned to a
single fine-grained SIMD lane, negatively impacting service
latency. Second, this approach transforms conditional scalar
branches into predicates, limiting the benefit of the CPU’s
branch predictor. Finally, this method requires a complete
recompilation of the microservice code and new ISA
extensions for the scalar instructions with no 1:1 mapping

Table I: CPU vs RPU vs GPU Key Metrics

Metric CPU GPU RPU
Thread/Execution Model SMT SIMT SIMT

General Purpose Programming ✓ ✗ ✓
System Calls Support ✓ ✗ ✓

Service Latency ✓ ✗ ✓
Energy Efficiency (Requests/Joule) ✗ ✓ ✓

in the vector ISA (see Section VI-A for further details).
To this end, we propose replacing the CPUs in con-

temporary data centers with a general-purpose architecture
customized for microservices: the Request Processing Unit
(RPU). The RPU improves the energy-efficiency of contem-
porary CPUs by leveraging the frontend and memory system
design of SIMT processors, while meeting the single thread
latency and programmability requirements of microservices
by maintaining OoO execution and support for the CPU’s
ISA and software stack. Under ideal SIMT-efficiency con-
ditions, the RPU improves energy-efficiency in three ways.
First, the 30% of total data center energy spent on CPU
instruction supply can be reduced by the width of the SIMT
unit (up to 32 in our proposal). Second, SIMT pipelines
make use of vector register files and SIMD execution units,
saving area and energy versus a MIMD pipeline of equiv-
alent throughput. Finally, SIMT memory coalescing aggre-
gates access among threads in the same warp, producing up
to 32× fewer memory system accesses. Although the cache
hit rate for SMT CPUs may be high when concurrent threads
access similar code/data, bandwidth and energy demands on
both cache and OoO structures will be higher than an OoO
SIMT core where threads are aggregated.

Moving from a scalar MIMD pipeline to a vector-like
SIMT pipeline has a latency cost. To meet timing constraints,
the clock and/or pipeline depth of the SIMT execution units
must be longer than that of a MIMD core with fewer threads.
However, the SIMT core’s memory coalescing capabilities
help offset this increase in latency by reducing the bandwidth
demand on the memory system, decreasing the queueing
delay experienced by individual threads. In our evaluation,
we faithfully model the RPU’s increased pipeline latency
(Section IV) and demonstrate that despite a pessimistic
assumption that the ALU pipeline is 4× deeper in the
RPU [43] and that L1 hit latency is > 2× higher, the average
service latency is only 44% higher than a MIMD CPU chip.

A well designed software system that is aware of the
hardware’s aggregating nature and can balance SIMT ef-
ficiency with end-to-end request latency is critical to the
RPU’s success. To meet these demands, we co-design the
RPU with a SIMR-aware software system pictured in Fig-
ure 2. The RPU executes a general-purpose CPU ISA,
supporting all the same functionality as a typical CPU core,
but aggregates the use of all its frontend structures over
multiple threads. Table I contrasts CPUs, GPUs and the RPU
at a high level. At runtime, a SIMR-aware HTTP server
groups similar requests together as they enter the microser-
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Figure 3: Social network microservice graph studied in this
work, similar to [17].

vice graph. To maintain end-to-end latency requirements
and keep throughput high, we introduce a similarity-aware
batching technique to increase SIMT efficiency, hardware
resource tuning to reduce cache and memory contention,
SIMR-aware memory allocation to maximize coalescing
opportunities, and a system-wide batch split mechanism to
minimize latency when requests traverse divergent paths
with drastically different latencies.

This work makes the following contributions:
1) We perform the first SIMT-efficiency characterization

of microservices using their native CPU binaries. We
demonstrate that, given the right batching mechanisms,
microservices execute efficiently on SIMT hardware.

2) We propose a new hardware architecture, the Request
Processing Unit (RPU). The RPU improves the
energy-efficiency and thread-density of contemporary
OoO CPU cores by exploiting the similarity between
concurrent microservice requests. With a high
SIMT efficiency, the RPU captures the single-
threaded advantages of OoO CPUs, while increasing
requests/joule.

3) We propose a novel software stack, co-designed
with the RPU hardware that introduces SIMR-aware
mechanisms to compose/split batches, tune SIMT
width, and allocate memory to maximize coalescing.

4) On a diverse set of 15 CPU microservices, we
demonstrate that the RPU improves requests/joule
by an average of 5.7x versus OoO single threaded
and SMT CPU cores, while maintaining acceptable
end-to-end latency.

II. BACKGROUND AND MOTIVATION

In this section, we detail five key observations from con-
temporary cloud and microservices that motivate the RPU.

Key Observation #1: Data center workloads have an
abundant number of similar requests: Public and private
data centers receive a significant amount of independent
requests from millions of users running the same service
code [44]. These requests follow a Single Program Multiple
Data (SPMD) pattern that can be efficiently leveraged on
SIMT hardware [36], [37], [45].

Key Observation #2: Microservices reduce the cache
required per-thread and minimize control-flow variations
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Figure 4: SIMT control efficiency of naive batching for some
microservices.

between concurrent threads: In the microservice design
paradigm, a monolithic logic tier is broken down into
smaller, software-friendly microservices where each is
responsible for a small piece of the system. Figure 3 depicts
a simple microservice graph for a social network service
similar to [17]. Each node in the data center is tasked with
many threads all running the same microservice. When
monolithic services are disaggregated, divergent control-
flow paths are often split into different microservices. That
is, if/else conditionals in the monolithic service are split
into one service for if and one service for else. Such an
organization makes it much more common that concurrent
microservices on the same machine traverse exactly the
same control-flow path before sending their request to the
next microservice. In addition, the per-thread data cache
requirement is significantly reduced, as each thread funda-
mentally does less work. Figure 4 shows the SIMT control
flow efficiency of modern microservices, assuming they are
batched on arrival into groups of 32 threads. On average,
we are able to achieve 68% SIMT efficiency when applying
naive batching. In Section III-B1, we propose optimized
batching techniques, which bring efficiency to 92%.

Key Observation #3: Modern data centers already rely
on request batching: In order to enable SIMT execution,
requests have to be batched and executed together. Batching
can introduce additional latency, however, batching is
already heavily used in data centers and employed in at
least one microservice on each network path. For example:
(1) deep learning inference batches requests to increase
accelerator compute throughput [9], [46], (2) key-value
store applications, like memcached [47], batch to amortize
the network overhead, (3) streaming graph analytics [48]
batch to alleviate lock contention, and (4) dynamic power
management [49]–[51] applies batching to save power.
Therefore, if we apply batching to exploit request similarity,
the batching overhead is amortized, as there are already
microservices on the same path that employ batching.

Key Observation #4: In the data center, all throughput
gains must be made under a tight latency constraint: The
trade-off between brawny and wimpy cores in the data
center is a well-studied problem [52], [53]. However, the
use of wimpy cores has not been widely adopted by data
center providers [52]. Under the same power budget, wimpy
cores can increase throughput [54], but have a higher task
execution latency than brawny cores. This increase in
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Figure 5: Off-chip DRAM BW and thread scaling.

total request latency makes them ill-suited for the data
center’s QoS-sensitive workloads. Prior work has argued
that energy-optimized systems in the data center must
ensure that their single-thread latency is no worse than
2× that of brawny cores [10], [52]. The same argument
applies for GPUs, that have high energy-efficiency, but have
unacceptably high service latency, 6000× worse than CPUs
for SPEC-Web [37], and 10× worse for memcached [36].

Key Observation #5: Future data center nodes need
to increase their on-chip thread count: Previous academic
and industrial work [20], [23]–[28] has shown that current
CPUs are inefficient when executing data center workloads
as there are many underutilized resources. They suggest that
an increase in the number of threads on-chip is necessary to
better use these resources [20], [24], [25]. Figure 5 depicts
the off-chip bandwidth and thread count per socket scaling
in the future. CPU vendors typically ensure 2 GB/sec of
DRAM BW per thread. If this is the case, we need to
provide up to 256 threads per socket with DDR5 [55]–[58]
and 512 threads with DDR6 [59] and HBM [60] to utilize
the available off-chip BW. The industry standard to increase
on-chip throughput is by adding more chiplets [30], [31],
cores [32], [33] and increasing the SMT degree [34], [35];
however, we argue that introducing SIMT to OoO CPU cores
will provide a more energy-efficient mechanism to scale on-
chip throughput.

Given these five observations, we design our RPU hard-
ware and software system to exploit the similarity among
requests in microservices through intelligent batching. The
RPU’s OoO SIMT frontend is able to meet the latency
constraints of contemporary services, while improving upon
the energy-efficiency and thread-density of modern CPUs.
In the next section, we discuss our system’s design.

III. SIMR SYSTEM

Figure 2 presents a high level overview of our SIMR
system. Groups of independent Remote Procedure Call
(RPC) or HTTP requests are received by our SIMR-Aware
server. The server ( I in Figure 2) groups requests into
a batch based on each request’s Application Program

Interface (API) similarity and argument size. The batches in
the RPU are analogous to warps in a GPU. Our batch size is
tunable based on resource contention, desired QoS, arrival
rate and system configuration (Section III-B explores these
parameters). Then, the server launches a service request
to the RPU driver and hardware. The RPU hardware ( II )
executes the batch in lock-step fashion over the OoO SIMT
pipeline (Section III-A).

A. RPU Hardware

Figure 6 presents a detailed overview of our RPU
hardware. Our RPU chip contains multiple RPU cores, and
a few CPU cores. The role of the CPU cores is to run the
OS process, HTTP server, and RPU driver while the RPU
cores run the microservices requests’ workload. Each RPU
core is similar to a brawny OoO CPU core, except hardware
is added (highlighted in green) to perform multithreading
in a SIMT fashion. The design philosophy of the RPU
is that the area/power savings gained by SIMT execution
and amortizing frontend (e.g., OoO control logic, branch
predictor, fetch&decode), are used to increase the thread
context and throughput at the backend ( 1 in Figure 6,
e.g., scalar/SIMD physical register file (PRF), execution
units, and cache resources); thus we still maintain the same
area/power budget and improve overall throughput/watt. It
is worth noting that the RPU thread has the same coarse
granularity as the CPU thread, such that the RPU thread
has a similar thread context of integer and SIMD register
file space. In addition, all execution units, including the
SIMD engines, are increased by the number of SIMT lanes.

OoO SIMT Pipeline: When merging the RPU’s SIMT
pipeline with speculative, OoO execution, we assume the
following design principles. First, the active mask is prop-
agated with the instruction throughout the entire pipeline
( 2 ). Therefore, register alias table (RAT), instruction buffer
and reorder buffer entries are extended to include the active
mask (AM). Second, to handle register renaming of the same
variable used in different branches, a micro-op is inserted to
merge registers from the different paths [61], [62]. Third, the
branch predictor operates at the batch (or warp) granularity,
i.e., only one prediction is generated for all the threads
in a batch. When updating the branch history, we apply a
majority voting policy of branch results ( 3 ) to optimize
for the most common control flow. The instructions from
mispredicted threads are flushed at the commit stage and the
corresponding PCs and active mask are updated accordingly.
Adding majority voting circuitry before branch prediction
increases branch execution latency and energy. We account
for these overheads in our evaluation, detailed in Section IV.

Control Flow Divergence Handling: To address control
flow divergence, a hardware SIMT convergence optimizer
( 4 ) is employed to serialize divergent paths [63], [64]. The
optimizer relies on stack-less reconvergence with a MinPC
heuristic policy [64]–[66]. In this scheme, each thread has its
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own Program Counter (PC) and Stack Pointer (SP), however,
only one current PC (i.e., one path) is selected at a time.
The selected PC is given to the basic block whose entry
point has the lowest address. The MinPC heuristic relies on
the assumption that reconvergence points are found at the
lowest point of the code they dominate [66]. For function
calls we assume a MinSP policy [64] which gives priority
to the deepest function call or we set a convergence barrier
at the instruction following the procedure call.

Figure 7 contains a simple example of MinPC policy
analysis and shows how PC selection interacts with divergent
control flow. When threads execute divergent control flows,
the paths are serialized, and each path is associated with the
current PC and corresponding active mask. This control flow
divergence serialization overhead is minimized by intelligent
batching techniques which we describe in Section III-B1.
The MinPC strategy has been found to achieve 100%
accuracy [64] to determine correct reconvergence points
for GPGPU workloads and up to 94% for CPU SPECint
workloads [65]. Even in the rare cases where the policy
misses the correct reconvergence points, it still reconverges
not too far behind and achieves overall good SIMT control
efficiency (Section III-B1). The stack-less reconvergence
approach is transparent to the compiler and ISA, and can
handle indirect branches without profiling or virtual ISA
support. This differs from stack-based approaches that are
widely used in modern GPUs [63], [67] which require
compiler-assisted static analysis to determine correct recon-
vergence points and ISA support to update the hardware
stack [68] and list all the targets of indirect branches [69].

Running threads in lock-step execution and serializing di-

vergent paths can induce deadlocks when programs employ
inter-thread synchronization [70]–[72]. There have been
several proposals to alleviate the SIMT-induced deadlock
issue on GPUs. All of the proposed solutions rely on multi-
path execution to allow control flow paths that are not at the
top of the SIMT stack to make forward progress. In the RPU,
when an active thread’s PC has not been updated for k cycles
and there have been at least b atomic instructions decoded
within the k-cycle window (an indication for spin locking by
other selected threads), then the waiting thread is prioritized
and we switch to the other path for t cycles. Otherwise,
the default MinSP-PC is applied. Multi-path interleaving
requires partitioning the return address stack (RAS) in the
branch prediction unit to support multiple control flows [73].
Another issue is that the MinSP-PC selection policy can
increase the branch prediction latency, hindering pipeline
utilization. To mitigate this issue, we can leverage techniques
proposed for complex, multi-cycle branch history structures,
such as hierarchical or ahead pipelining prediction [74].

Sub-batch Interleaving: Previous work [20], [23]–[25]
show that data center workloads tend to exhibit low IPC per
thread (a range of 0.5-1 out of 5, and up to 1.75 IPC when
SMT enabled [20]), due to long memory latency at the
back-end and instruction fetch misses at the frontend [20],
[26]. To increase our execution unit utilization and ensure a
reasonable backend execution area, we implement sub-batch
interleaving [75] as depicted in Figure 8a. By decreasing
the number of SIMT lanes (m) per execution unit to be a
fraction of batch size (n), we issue threads over multiple
cycles. Sub-batch interleaving along with OoO scheduling
can hide nanosecond-scale latencies efficiently, increasing
IPC utilization. Another advantage of sub-batch interleaving
is that we can skip issue slots of non-active threads to
mitigate control divergence penalties and support smaller
batches of execution [75]. To hide longer microsecond-scale
latencies [76]–[78], multiple batches can be interleaved via
hardware batch scheduling in a coarse-grain, round-robin
manner with zero-overhead context switching. However,
studying multi-batch scheduling to hide microsecond-scale
latency is beyond the scope of this work.
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Memory Coalescing: To improve memory efficiency, a
low-latency memory coalescing unit (MCU) is placed before
the load and store queues ( 5 ). As described in Figure 8b,
the MCU is designed to coalesce memory accesses to the
same cache line from threads in a single batch, making
better use of cache throughput and avoiding cache access
serialization. The MCU filters out accesses to shared inter-
request data structures that might exist in the heap or data
segments [25]. To balance the need for a low cache hit
latency with avoiding divergent access serialization, the
MCU only detects the two most common memory coalescing
scenarios: when all threads access the same word, or when
threads access consecutive words from the same cache
line. This is unlike the complex sub-batch sharing in GPU
data coalescing [63], [79] which increases memory access
latency to detect more complex locality patterns [80].

LD/ST Unit: In our MCU, if neither simple pattern
is detected, the number of accesses generated will equal
the number of active SIMT lanes. All accesses from the
same instruction will allocate one row in the load or store
queue ( 6 ), sharing the same PC and age fields/logic, and
thus amortizing the memory scheduling and dependence
prediction [81] overhead. Figure 9 depicts the LD/ST unit
(LSU) structure in more detail. The entries of the RPU’s
LD/ST queues are expanded such that each row can contain
as many addresses as there are SIMT lanes. Further, we
assign an independent content-address memory (CAM) for
each lane to account for in-parallel store-to-load forwarding.
For coalesced accesses, only one slot in the entry (entry#0)
is allocated and broadcast for CAM comparisons. To save
area, we do not preserve the loaded value in the load queue;
instead, we write the return value to the register file directly
and set the corresponding valid bit. Therefore, the load
instruction is completed, and the tag is broadcast when all
the slots in the entry are valid and completed.

Cache and TLB: To serve the throughput needs of many
threads while achieving scalable area and energy consump-
tion, the RPU uses a banked L1 cache. The load/store queues
are connected to the L1 cache banks via a crossbar ( 7 ).
To ensure TLB throughput can match the L1 throughput,

# PC Age Res Tag Coal? size Add1 V1? Add2 V2? …………… Addm Vm?

1 0x8762 981 R6 0 4B 0x7623 0 0x7f73 0 0x9123 0

2 0x8786 982 R11 1 4B 0x8900 0

3 0x8798 985 R2 1 32B 0x8100 0

# PC Age iTag Coal? size Add1 Val1 Add2 Val2 ………… Addm Valm

1 0x8730 983 R1 0 4B 0x8810 87 0x8873 77 0x8823 _

2 0x8790 984 R0 1 32B 0x8100 20
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Figure 9: RPU’s LD/ST Unit

each L1 data bank is associated with a TLB bank. Since
the interleaving of data over cache banks is at a smaller
granularity than the page size, TLB entries may be dupli-
cated over multiple banks. This duplication overhead reduces
the effective capacity of the DTLBs, but allows for high
throughput translation on cache+TLB hits. As a result of the
duplication, all TLB banks are checked on the per-entry TLB
invalidation instructions [82]. Sections III-B3 and III-B4
discuss how we alleviate contention to preserve intra-thread
locality and achieve acceptable latency via batch size tuning
and SIMR-aware memory allocation.

Weak Consistency Model+NMCA: To exploit the fact
that requests rarely communicate and exhibit low coherence,
read-write sharing or locking [24], [25], as well as extensive
use of eventual consistency in data center [83], we design the
memory system to be similar to a GPU, i.e., weak memory
consistency with non-multi-copy-atomicity (NMCA) 1. RPU
implements a simple, relaxed coherence protocol with no-
transient states or invalidation acknowledgments, similar to
the ones proposed in HMG [88] and QuickRelease [89].
That is, cache coherence and memory ordering are only
guaranteed at synchronization points (i.e., barriers, fences,
acquire/release), and all atomic operations are moved to
the shared L3 cache. Therefore, we no longer have core-
to-core coherence communication, and thus we replace the
commonly-used mesh network in CPUs with a higher-
bisection-bandwidth, lower-latency core-to-memory crossbar
( 8 ). Furthermore, NMCA permits threads on the same lane
to share the store queue, reducing the complexity of having
a separate store queue per thread [85]. This relaxed memory
model allows our design to scale the number of threads effi-
ciently, improving thread density by an order of magnitude.

1) CPU vs GPU vs RPU: Table II lists the key archi-
tectural differences between CPUs, GPUs and our RPU.
The RPU takes advantage of the latency-optimizations and

1In fact, some CPU ISAs, like ARMv7 [84], [85] and POWER [86],
already support a weak consistency model with non-multi-copy-atomicity
in their specifications [87].



Table II: CPU vs GPU vs RPU architecture differences

Metric CPU GPU RPU
Core model OoO In-Order OoO

Freq High Moderate High
ISA ARM/x86 HSAIL/PTX ARM/x86

Programming General-Purpose CUDA/OpenCL General-Purpose
System Calls Yes No Yes
Thread grain Coarse grain Fine grain Coarse grain
TLP per core Low (1-8) Massive (2K) Moderate (8-32)
Thread model SMT SIMT SIMT

Consistency Variant Weak+NMCA Weak+NMCA
Coherence Complex Relaxed Simple Relaxed Simple

Interconnect Mesh Crossbar Crossbar

Table III: CPU inefficiencies in the data center

Data center characteristics &
CPU inefficiency RPU’s mitigation

Request similarity [37] & high
frontend power consumption [11]

SIMT execution to amortize frontend
overhead

Inter-request data sharing [25] Memory coalescing and an increase in
the number of threads sharing private
caches

Low coherence/locks [24], [25] and
eventual consistency [83]

Weak memory ordering, relaxed coher-
ence with non-memory-copy-atomicity
& higher bandwidth core-to-memory in-
terconnect

Low IPC due to frequent frontend
stalls and memory latency [20],
[23]–[26]

Multi-thread/sub-batch interleaving

DRAM & L3 BW are underuti-
lized, data prefetchers are ineffec-
tive [21], [24], [25], [27]

High thread level parallelism (TLP) to
fully utilize BW

Microservice/nanoservice have a
smaller cache footprint [17]

High TLP and decrease L1&L2 cache
capacity/thread

programmability of the CPU while exploiting the SIMT ef-
ficiency and memory model scalability of the GPU. Finally,
Table III summarizes a set of data center characteristics
that create inefficiencies in CPU designs and how the RPU
mitigates them.

2) An Examination of SMT vs SIMT Energy Efficiency:
This subsection examines why the RPU’s SIMT execution
is able to outperform MIMD SMT hardware for data center
workloads. Equation 1 presents an analytical computation
of the RPU’s energy efficiency (EE) gain over the CPU. In
Equation 1, n is the RPU batch size, eff is average RPU
SIMT efficiency, and r is the ratio of memory requests
that exhibit inter-thread locality within a single SIMR
batch. CPU energy is divided into frontend+OoO overhead
(including fetch, decode, branch prediction, OoO control
logic and load/store queue), execution (including register
reading/writing and instruction execution), memory system
(including private and L3 caches), and static energies.

EE =
CPUEnergy

RPUEnergy

=
ExecEnergy + MemEnergy + FE OoOEnergy

ExecEnergy + (1 − r)MemEnergy + 1
n∗eff ∗

+StaticEnergy

[r ∗ MemEnergy + FE OoOEnergy + StaticEnergy] + SIMTOverhead

(1)

In Equation 1, the RPU’s energy consumption in frontend
and OoO overheads are amortized by running threads in
lock step; hence the energy consumed for instruction fetch,
decode, branch prediction, control logic and CAM tag
accesses [90] for register renaming, reservation station,
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Figure 10: Dynamic energy consumption breakdown per
pipeline stage as a percentage of total CPU core energy.

register file control, and load/store queue are all consumed
only once for all the threads in a single batch (see Figures 6
and 9). In scalar CPU designs, the frontend and OoO
overheads have to be consumed for each thread. Even
with SMT, the entire CPU pipeline is partitioned among
the simultaneous threads. Threads on the same core are
executed independently [34], [35], [91], which fails to
exploit thread similarity and increases single thread latency.

Coalesced memory accesses are also amortized in the
RPU by generating and sending only one access for
the batch to the memory system. While private cache
hits and MSHR merges can filter out some of these
coalesced accesses in a SMT design, the programmer
must guarantee that simultaneous threads are launched
and progress together in order to capture this inter-thread
data locality [92], [93] and still must pay the energy cost
of multiple cache accesses. Furthermore, since SIMT can
execute more threads/core given the same area constraints,
the reach of its locality optimizations is wider.

The final metric SIMT execution amortizes is static
energy. The RPU improves throughput/area and has a
smaller SRAM budget/thread compared to an SMT core.
The RPU introduces an energy overhead (SIMTOverhead in
Equation 1) to account for the SIMT convergence optimizer,
majority voting circuit, active mask propagation, MCUs,
larger caches and multi-bank L1/L2 arbitration. However, at
high SIMT efficiency, the energy savings from the amortized
metrics greatly outweigh the SIMT management overhead.

Figure 10 shows the energy consumption breakdown per
pipeline stage of our studied microservices when running
on CPU (Section IV details our experimental methodology).
As shown in the figure, workloads consume a consider-
able amount of energy at the frontend and OoO stages,
with an average of 73% [11], [15]. The HDSearch-leaf
and Recommender-leaf are the exception with 39% and
60% of energy consumed on frontend+OoO respectively.
These workload contain fully SIMD vectorized functions;
therefore, the backend consumes a large fraction of the
energy. The memory subsystem consumes 20% of energy on
average. By substituting the values in Equation 1 with the
amortized components, which consume 50-90% of the total
CPU energy, an anticipated 2-10x energy efficiency gain can
be achieved with the RPU when SIMT efficiency is high and
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Figure 11: SIMT control flow efficiency with different request batching policies (Batch Size = 32)
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Figure 12: Hardware/Software Stack of CPU vs GPU vs
RPU for microservices programming

accesses are frequently coalesced. This anticipated energy
efficiency is aligned with previous work [94] which studied
energy efficiency when vectorizing data-parallel workloads
(PARSEC) on CPU hardware.

In the next section we experimentally show the amount of
SIMT control and memory efficiency present in microservice
workloads and explore the effect of different batch sizes.

B. SIMR Software Stack

Figure 12 compares the RPU’s software (SW) stack,
to that of the CPU and GPU. GPU computing ( B in
Figure 12) generally requires the programmer to use a
specialized language, like CUDA, and (in the case of
NVIDIA) uses a closed-source compiler, runtime, driver,
and ISA. These all restrict programmer productivity. While
GPUs have been successful accelerating deep learning
inference, they are poorly suited for workloads with
middling parallelism and tight deadlines.

Microservice developers typically use a variety of high-
level open-source programming languages and libraries
( A ). For the RPU, we maintain the traditional CPU
software stack ( C , E ), changing only the HTTP server,
driver and memory management software. The RPU is
ISA-compatible with the traditional CPU.

The role of our HTTP server ( D ) is to assign a new
software thread to each incoming request [95], [96]. The
SIMR-aware server groups requests in a batch based on each
request’s Application Program Interface (API) similarity and
argument size (see Section III-B1), then sends a service
launch command for the batch to the RPU driver with
pointers to the thread contexts of these requests.

The RPU driver ( F ) is responsible for runtime batch
scheduling and virtual memory management. The driver
overrides some of the OS system calls related to thread
scheduling, context switching, and memory management,
optimizing them for batched RPU execution. For example,
context switching has to be done at the batch granularity
(Section III-B5), and memory management is optimized
to improve memory coalescing opportunities at runtime
(Section III-B2).

To ensure efficient SIMT execution, the software stack’s
primary goals are to: (1) minimize control flow di-
vergence by predicting and batching requests’ control
flow (Section III-B1), (2) reduce memory divergence
and alleviate cache/memory contention with batch tun-
ing and SIMR-aware virtual memory mapping (Sec-
tions III-B2, III-B3, III-B4), and (3) alleviate net-
work/storage divergence through system-wide batch splitting
(Section III-B5).

1) SIMR-Aware Batching Server: A key aspect to achieve
high energy efficiency is to ensure batched threads follow
the same control flow, and thus minimize control divergence.
To achieve this, we need to group requests that have similar
characteristics. Thus, we employ two heuristic-based proof-
of-concept batching techniques. First, we group requests
based on API or RPC calls. Some microservices may
provide more than one API, for example, memcached has
set and get APIs, post provides newPost and getPostByUser
calls. Therefore, we batch requests that call the same
procedure to ensure they will execute the same source code.
Second, we group requests that have similar argument/query
length. For example, when calling the Search microservice,
requests that have long search query (i.e., more words) are
grouped together as they will probably have more work
to do than the smaller ones. Figure 11 shows the SIMT
efficiency (i.e., = #scalar-instructions / (#batch-instructions
× batch-size)) for naive batching (based on arrival time)
and an optimized per-API and per-argument batching. We
demonstrate both the ideal reconvergence with stack-based
IPDOM analysis [63], [67] and MinSP-PC heuristic
policy [64]. We assume a batch size of 32 requests for all
microservices and we calculate the average over 75 batches
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Figure 13: Stack Segment (SS) coalescing (physical stack
page size = virtual page size * batch size) with 4-byte
interleaving. BS:batch size, TID: thread ID.

(2400 requests). As shown in Figure 11, batching per-API
improves SIMT efficiency for many microservices, up to 2x
improvement in memcached, and 4x in Post microservices.
When taking into account per-argument length batching,
the overall SIMT efficiency is further improved by 20% on
average and up to 5x better on the Search-leaf and post-text
microservices. In total, the stack-based analysis is able to
achieve 92% SIMT efficiency. Interestingly, MinSP-PC is
not far behind with an efficiency of 91% on average. In
some microservices the heuristic even shows 1-2% higher
efficiency due to eliminating the redundant execution of
reconvergnce instructions in the stack-based approach [64].

We achieve this SIMT efficiency while making the follow-
ing assumptions. First, some of these microservices are not
well optimized and employ coarse-grain locking which af-
fects our control efficiency negatively due to critical section
serialization and lock spinning. In practice, optimized data
center workloads rely on fine-grain locking to ensure strong
performance scaling on multi-core CPUs [25], [96]. In our
experiments we assume threads that access different memory
regions within a data structure use fine-grained locks for
synchronization. We also assume that a high-throughput,
concurrent memory manager is used for heap segment allo-
cation [97]–[99] rather than the C++ glibc allocator that uses
a single shared mutex. Finally, HDSearch-midtier contains
a data-dependent control flow in which one side of a branch
contains more expensive code. To improve SIMT efficiency
in such scenarios, we use speculative reconvergence [100]
to place the IPDOM synchronization point at the beginning
of the expensive branch.

2) Stack Segment Coalescing: Similar to the local mem-
ory space in GPUs [63], [101], Figure 13 depicts how
the RPU driver and TLB hardware allocate and map stack
memory from different threads in the same batch to min-
imize memory divergence. The interleaving is static and
transparent to the compiler and the programmer. When the
runtime system calls mmap to allocate a new stack segment
for a thread [102], [103], we ensure that the stack segments
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Figure 14: RPU L1 accesses, normalized to CPU accesses

for all the threads in a batch are contiguous ( a in Figure 13).
In hardware, we detect accesses to stack addresses and apply
an interleaved data mapping ( b ), such that stack segments
from different threads are interleaved every 4 bytes in the
physical address space ( c ). The RPU’s address generation
unit overrides the stack base of all active threads with
the stack base of thread 0, thus we only need one TLB
translation per stack access. A hardware offset mapping
uses the thread ID (TID) of the accessing thread as an
index into the SS0 space to determine where the value
resides in physical memory. However, this hard mapping
prevents threads from accessing other threads’ stack data,
which is allowed in CPU programming. To resolve this
issue, we calculate the target stack segment TID of each
access based on the access’ virtual segment address, i.e.
TargetTID = (SSi−SS0)/StackSize, exploiting the fact
that stacks are allocated consecutively in the virtual space.
If the accessing thread has permission to access the target
thread’s stack (discussed further in Section VI-C), then the
TargetTID is used, allowing inter-thread stack accesses.
Note that GPU programming languages avoid this issue by
making stack values thread-local.

Coalescing Results: Figure 14 demonstrates the
effectiveness of our stack interleaving and heap memory
coalescing policies (previously described in Section III-A
and Figure 8b). Figure 14 plots the total number of L1
accesses in the RPU, normalized to a MIMD CPU, when
both are executing 640 threads. The RPU’s 32-thread batches
generate on average 4x fewer accesses than the CPU. The
causes of this traffic reduction are two-fold. First, many
of our middle tier microservices contain significant stack
segment accesses (up to 90% in the Post microservices)
caused by frequent procedure/system calls, push/pop argu-
ment passing, and reading/writing local variables. Our stack
segment interleaving technique coalesces all these accesses
and generates less traffic compared to the CPU. For example,
pushing an 8-byte address in each thread of a 32-thread batch
onto the stack generates 8 accesses (8B x 32 threads / 32B
cache lines); however, in the CPU 32 accesses are generated.

Second, microservices typically share some global
data structures and constant values in the heap and data
segments [25] respectively. In the RPU, accesses to this
shared data are coalesced within the MCU and loaded once
for all the threads in a batch, improving L1 data throughput.
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While traffic reduction is significant in many cases,
back-end data-intensive microservices, like HDSearch,
still exhibit high traffic as each thread contains private
data structures in the heap with little sharing, resulting in
frequent divergent heap accesses.

3) Batch Size Tuning and Memory Contention : Previous
work [17] shows that micro and nanoservices typically
exhibit a low cache footprint per thread, as services are bro-
ken down into small procedures and read-after-write inter-
procedure locality is often transferred to the system network
via RPC calls. To exploit this fact, we increase the number
of threads per RPU core compared to traditional CPUs.
Figure 15 shows the L1 MPKI of a single threaded CPU
with 64KB of L1 cache and an RPU with different batch
sizes (32, 16, 8, 4) and 256KB of L1 cache. Interestingly,
many of our microservices can run at a batch size of 32
threads and require only 8KB/thread without thrashing the
L1 cache. More importantly, for these microservices, the L1
MPKI is significantly improved compared to the CPU. This
is because memory coalescing reduces the overall number of
L1 accesses as well as the number of misses. As the batch
size decreases, the coalescing efficiency is reduced.

On the other hand, some leaf node microservices, like
HDsearch-leaf and Search-leaf, have high L1 MPKI com-
pared at a batch size of 32. These are data-intensive services,
exhibiting a larger intra-thread locality footprint due to diver-
gent heap segment accesses, read-after-write temporary data
and prefetch buffer to hide long memory latency. However,
they show low MPKI when we throttle the batch size to 8
(see Figure 15). We make similar observations for TLB and
memory system contention when applying batch size tuning.
Therefore, we run all our microservices at a batch size of 32,
except for these data-intensive services, which are executed
with a batch size of 8. Due to sub-batch interleaving, running
at this smaller batch size does not affect our execution unit
utilization. Regardless of batch size, our RPU hardware is
configured with 8 SIMT lanes (Section IV), as such, an

1. Microservice () 

2. // Create private temporary

3. // array in the heap segment

4. int* temp = new int[n];

5. ………..

6. for(int i=0; i<n; i++)

7. // Write to the temp

8. temp[i] = i+x;

9. ………..

10. for(int i=0; i<n; i++)

11. // Read from the temp

12. sum += temp[i];         

13. ………..

(a) A divergent heap segement
accsses of temp data

B0 B1 B2 B3

T0
0xf6746000
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SIMR-Agnostic Memory Allocator
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L1 cache 
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(b) SIMR-aware memory allocation as-
suming 4 banks 32B interleaving

Figure 16: SIMR-aware memory allocator.

8-thread batch can fully utilize the pipeline, even though
amortization suffers versus a 32-thread batch. After inspect-
ing the HDsearch-leaf source code, we found that we could
reduce the L1 cache footprint of the workload by eliminating
some unnecessary data copies and employing function fusion
(analogous to kernel/layer fusion in GPU and DL); however,
we decided not to alter the program in our experiments.

Selecting the right batch size is influenced by many
other factors, e.g. the request arrival rate, desired QoS, and
system configuration. As widely practiced by data center
providers [20], an offline configuration can be applied to
tune the batch size for a particular microservice. The time
overhead to form a batch size of 8-32 requests is well
tolerated by data center providers and matches those used
in Google and Facebook’s batching mechanisms for deep
learning inference [9], [46].

4) SIMR-Aware Memory Allocation : Divergent accesses
to the heap have the potential to create bank conflicts
in the RPU’s multi-bank L1 cache. Figure 16a depicts a
frequent code pattern in our microservices. The program
dynamically allocates a thread-private temporary array on
the heap (line#4), fills the array with intermediate results
in a linear fashion (line#8), and reads from this array to
process the data (line#12). The top section of Figure 16b
shows the behavior of the default C++ SIMR-agnostic
CPU allocator. We assume a virtually-indexed L1 cache as
is widely employed by CPU designs. Thus, the memory
allocator may assign addresses to the temp array that result in
significant bank conflicts. One solution for this is to change
the address mapping of the heap segment [104] to interleave
elements accessed by parallel threads, similar to our stack
segment interleaving. However, this type of interleaving is
ill-suited for heap accesses, which are less structured than
stack accesses. Another solution is to rely on hardware-based
xor-ing hashing [105], [106], however our experiments show
that it is ineffective to alleviate bank conflicts.

To this end, we address this problem by proposing a new
SIMR-aware memory allocator that the RPU driver can
provide as an alternative and overrides the memory allocator



1. Procedure get_user(int userid) 

2. /* first try the cache */

3. data = memcached_fetch("userrow:" + userid)

4. if not data         /* SIMT Divergence*/

5. /* not found : request database */

6. data = db_select("SELECT * FROM users

7. WHERE userid = ?", userid)

8. /* then store in cache until next get */

9. memcached_add("userrow:" + userid, 

10. data) 

11. end /* SIMT Reconvergence Point*/

12. return data 

(a) Code snapshot for network divergence
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(b) Batch split

Figure 17: Batch split technique for control flow divergence
when a path contains long network/storage blocking event.

used by the run-time library through LD PRELOAD Linux
utility [107], [108]. Our proposed memory allocator,
demonstrated in the bottom image of Figure 16b, avoids
data interleaving for the heap segment. Instead, the key
idea is to take into account that data are already interleaved
every n bytes over L1 banks (n=32B in our baseline).
Therefore, if we ensure that the start address of every
new memory allocation per thread follows the condition
(start address%(n*tid) = 0), then accesses to the private
data structure will be conflict-free for all consecutive data
accesses, as shown in Figure 16b. The overhead of this
method is the unused few bytes at the start of each data allo-
cation to ensure the alignment constraint (around 896 bytes
for an 8-thread allocation). This memory fragmentation is
amortized with large memory allocation sizes.

5) System-Level Batch Splitting : In the RPU, context
switching is done at the batch granularity, either all threads
in a batch are running or all the threads in the batch are
switched out. When RPU threads are blocked due to an I/O
event, the RPU driver groups the I/O received interrupts and
wakes all the threads in the same batch at the same time
to handle their interrupts and continue lock-step execution.
However, requests within the same batch can follow different
control paths, and paths may be of different lengths. For
memory and nanosecond-scale latencies, the paths synchro-
nize at the IPDOM reconvergence point. However, if one
path contains significantly longer millisecond-scale latency
(e.g., a request to storage or the network), this can hinder
the threads on the other path, extending the average latency.
Figure 17a illustrates a frequently-used design pattern in
microservice development, in which back-end storage ac-
cesses are cached in a fast in-DRAM key-value store, like
memcached (line#3 in Figure 17a). If the user request hits
in the microsecond-scale latency memcached, the request
returns immediately to the client (line#12); otherwise, it has
to access the millisecond-scale storage, update the cache, and
send the result back (lines#5-10). If the hit requests have to
wait for the misses at the reconvergence point (line#11), then
the storage latency will dominate the total average latency.

SIMTec
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& McPAT

uQSIM

SIMT Efficiency
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System-level 
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traces 
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Dynamic
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Figure 18: End-to-end experimental setup.

To avoid this issue we propose a batch splitting technique,
depicted in Figure 17b, in which we split the batch and
allow multi-path execution [109] for hit and miss requests.
The batch is subdivided into two batches, one for the hit
requests to continue execution beyond the reconvergence
point ( 4 in Figure 17b), and the other for blocked requests
accessing storage ( 3 ). The driver copies and saves the
architectural state and call stack for the blocked requests.
Note that in cycle-level multipath execution on GPUs [109]–
[111], divergent paths still ultimately converge and resources
are not freed until all paths are complete. In SIMR batch
splitting the fast completing path can be allowed to continue
and finish execution, while the slower blocked path is
context switched out, freeing up resources for other requests.

A hardware-based timeout or software-based hint can be
used to determine the splitting decision. Although batch
splitting reduces control efficiency, as the miss requests will
continue execution alone, we can still batch these orphan
requests at the storage microservice and form a new batch to
be executed with a full SIMT active mask. We believe there
is a wide space of future work to analyze the microservice
graph for splitting and batching opportunities.

IV. EXPERIMENTAL SETUP

Workloads: We study a microservice-based social
graph network as depicted in Figure 3, similar to the one
represented in the DeathStarBench suite [17]. Search, HDIm-
ageSearch, Recommender, and McRouter are adopted from
the µsuite benchmarks [16]. We use the input data associated
with the suite. The microservices use diverse libraries,
including C++ stdlib, Intel MKL, OpenSSL, FLANN,
Pthread, zlib, protobuf, gRPC and MLPack. The Post and
User microservices are adopted from the DeathStarBench
workloads [17] and social graph is from SAGA-Bench [112].
The microservices have been updated to interact with
each other via Google’s gRPC framework [113], and
they are compiled with the -O3 option and SSE/AVX
vectorization enabled. While the RPU can also execute
other HPC/GPGPU applications that exhibit the SPMD
pattern, like OpenMP and OpenCL, we limit the focus of our
study to microservice workloads. Section VI-D discusses
running GPGPU workloads on RPU in further detail.

Simulation Setup: We analyze our RPU system over
multiple stages and simulation tools. Figure 18 shows our
end-to-end experimental setup. First, we analyze the SIMT
efficiency of our microservice workloads with an in-house



Table IV: CPU vs RPU Simulated Configuration
Metric CPU CPU SMT RPU
Core

Pipeline
8-wide

256-entry OoO
8-wide

256-entry OoO
8-wide

256-entry OoO
ISA x86-64 x86-64 x86-64
Freq 2.5 GHZ 2.5 GHZ 2.5 GHZ

#Cores 98 80 20
Threads/core 1 SMT-8 SIMT-32 (1 batch)
Total Threads 98 640 640

#Lanes 1 1 8
Max IPC/core 8 8 64 (issue x lanes)

ALU/Bra Exec Lat 1-cycle 1-cycle 4-cycle
#Stages (ALU-load) 9-12 9-12 14-18

L1 Inst/core 64KB 64KB 64KB
Reg File (PRF)/core
(scalar+ FP SIMD) 6KB 48KB 192KB

LSU (read/write) 128/64 128/64 128/64 (8x wide)

L1 Cache
64KB, 8-way,

3-cycle, 1-bank
32B/cycle

64KB, 8-way,
3-cycle, 8-bank

256B/cycle

256KB, 8-way,
8-cycle, 8-bank

256B/cycle

L1 TLB 48-entry 64-entry
256-entry, 8-bank
(32-entry/bank)

L2 Cache
512KB, 8-way,

12-cycle, 1-bank
512KB, 8-way,

12-cycle, 2-bank
2MB, 8-way,

20-cycle, 2-bank
L3 Cache 32MB, 16-way 32MB, 16-way 32MB, 16-way

DRAM
8x DDR5-3200,

200 GB/sec
10x DDR5-7200,

576 GB/sec
10x DDR5-7200,

576 GB/sec
Interconnect 9x9 Mesh 11x11 Mesh 20x20 Crossbar

OoO entries/thread 256, 8-wide 32, 1-wide 256, 8-wide
L1 capacity/thread 64KB 8KB 8KB
TLB entries/thread 48 8 8
L1B/cycle/thread 32B/cycle 32B/cycle 32B/cycle
memBW/thread 2 GB/sec 0.9 GB/sec 0.9 GB/sec

x86 PIN [114]-based tool, named SIMTec [115]. The tool
traces the dynamic control flow of CPU threads running
in a batch, and calculates the associated active mask and
overall SIMT efficiency. SIMTec traces the whole SW
stack, including user code, libraries, and frameworks. The
PIN tool operates in userspace mode so we were not able
to trace system calls; however, they only represent 20% of
the microservices executed instructions [17], and we expect
they should exhibit high SIMT control efficiency.

Second, we use the trace-driven, cycle-level Accel-Sim
v1.1 [116] simulator and BookSim [117] for interconnect
simulation to obtain chip-level throughput and service
latency for the CPU and RPU. We updated Accel-Sim’s
frontend to execute x86 traces generated by SIMTec.
CISC instructions with memory operands are broken
down to multiple RISC-like instructions with separate
loads and stores [118]. Further, Accel-Sim’s performance
model has been extended to model a CPU-like pipeline
with superscalar, OoO issue. Table IV lists the simulator
configuration for our CPU vs. RPU analysis. We model a
many-core x86-based single-threaded CPU similar to the
ones found on the market today and commonly used in data
centers [30]–[33]. We also model an 8-way simultaneous
multi-threading CPU (SMT8), to reflect the highest SMT
degree found in the market today from IBM POWER9 [35].

We ensure both CPU and RPU have the same pipeline
configuration and frequency. For SMT8, we maintain the
same number of total threads and memory resources/thread
as the RPU (see the last four entries in Table IV). Cache
latency is calculated based on CACTI v7.0 [119]. The multi-
bank caches and MCU increase the L1/L2 hit latency from
3/12 cycles in the CPU to 8/20 cycles in the RPU. For
other execution units, the ALU/Branch execution latency
is increased to 4 cycles in the RPU to account for the
extra wiring and capacitance of adding more lanes [43] and

Table V: Per-component area and peak power estimates

Component
Area Peak Power

CPU RPU CPU RPU

mm2 %
Core mm2 %

Core Watt %
Core Watt %

Core
Fetch&Decode 0.27 24.3 0.3 4.3 0.39 15.6 0.4 3.6

Branch Prediction 0.01 0.9 0.01 0.1 0.02 0.8 0.02 0.2
OoO 0.11 9.9 0.17 2.4 0.85 34 1.45 12.9

Register File 0.14 12.6 2.52 35.8 0.49 19.6 4.26 38
Execution Units 0.25 22.5 2.31 32.8 0.34 13.6 2.51 22.4
Load/Store Unit 0.07 6.3 0.34 4.8 0.13 5.2 0.41 3.7

L1 Cache 0.04 3.6 0.22 3.1 0.09 3.6 0.2 1.8
TLB 0.02 1.8 0.08 1.1 0.06 2.4 0.4 3.6

L2 Cache 0.2 18 0.71 10.1 0.13 5.2 0.24 2.1
Majority Voting 0 0 0.02 0.3 0 0 0.03 0.3
SIMT Optimizer 0 0 0.03 0.4 0 0 0.05 0.4

MCU 0 0 0.02 0.3 0 0 0.01 0.1
L1-Xbar 0 0 0.31 4.4 0 0 1.23 11

Total-1core 1.11 7.04 2.5 11.21

mm2 %
Chip mm2 %

Chip Watt %
Chip Watt %

Chip
Total-Allcores 108.8 77.2 140.8 81 245 72.5 224.2 73.7

L3 Cache 7.82 5.5 7.82 4.5 0.75 0.2 0.75 0.2
NoC 9.78 6.9 1.72 1 36.52 10.8 7.02 2.3

Memory Ctrl 14.64 10.4 23.59 13.6 6.85 2 19.27 6.3
Static Power 49 14.5 53 17.4
Total Chip 141 173.9 338.1 304.2

the majority voting circuit. We assume an idealistic cache
coherence protocol for the CPU with zero traffic overhead,
in which atomics are executed as normal memory loads in a
private cache. In the RPU, atomic instructions bypass private
caches and execute at a shared L3 cache.

Third, to study batching effects on a large scale and
capture the system implications of context switching,
queuing delay, and network/storage blocking, we harness
uqsim [120], an accurate and scalable simulator for
interactive microservices. The simulator is configured
with our social graph network along with the latency and
throughput values obtained from Accel-Sim simulations to
calculate system-wide end-to-end tail latency.

Energy&Area Model: We use McPAT [121] and
some elements from GPUWattch [80] to configure the
CPU and RPU as described in Table IV and to estimate
per-component area, peak power and dynamic energy.
For the RPU, we consider the additional components and
augmentation required to support SIMT execution described
in Figure 6. The majority voting circuitry is modeled as
a CAM structure (32-way comparator) to count the taken
and non-taken results and a reduction tree to calculate the
most selected destination address. The SIMT optimizer is
modeled as 2x reduction tree to calculate the minimum PC
and SP [65] and a CAM structure to calculate the active
mask. A 2x 32-way CAM structure is used to model the
memory coalescing units [80]. The RAT, ROBs, and uop
buffers are extended to include the 4-byte active mask and
its associated logic.

Table V shows the calculated area and peak power for the
RPU and single-threaded CPU at 7-nm technology [122].
To support SMT-8 in the CPU, a 14% area and power
increase per core is required (not shown in the table for
brevity). From analyzing the table results, we can make the
following observations. First, the CPU’s frontend+OoO area
and power overhead are roughly 40% and 50% respectively,
which are aligned with modern CPU designs [11], [15]. The
table shows that the RPU core is 6.3x larger and consumes



4.5x more peak power than the CPU core; however, the
RPU core supports 32x more threads. Second, in the RPU
core, most of the area is consumed by the register file and
execution units, 68% of the area vs. 35% in the CPU. The
additional overhead of the RPU-only structures consume
11.8% of the RPU core. Most of this overhead comes from
the 8x8 crossbar that connects the L1 banks to the LD/ST
queues. Third, the dynamic energy per L1 access and L2
access in RPU is higher by a factor of 1.72x and 1.82x
respectively than in CPU, due to the larger cache size,
L1-Xbar and MCU. However, the generated traffic reduction
and other energy savings in the frontend will outweigh this
energy increase as detailed in the next section.

In Section V, we use the per-access energy numbers
generated from our McPAT analysis with the simulation
results generated by Accel-Sim to compute the runtime
energy efficiency of each workload (Figure 19).

V. EXPERIMENTAL RESULTS

A. Chip-Level Results

Figure 19 and Figure 20 show energy efficiency
(requests/joule) and service latency of RPU and CPU-SMT8
normalized to single threaded CPU. All the hardware exe-
cutes the same number of requests (2400). On average, the
RPU can achieve 5.7x higher energy efficiency compared to
CPU, while still coming within 1.44x of its service latency,
with the worst service latency of 1.7x at HDSearch-midtier.
Overall, the RPU’s service latency remains under the 2x
higher latency limit defined by data center providers [10],
[52]. The main causes of RPU’s energy-efficiency are: (1)
reducing the number of issued instructions by a factor of
30x, amortizing the frontend and OoO dynamic energy
overhead that accounted for up to 73% in the scalar
heavily-integer microservices, (2) generating 4x less traffic
on average, therefore decreasing the memory energy
consumption, and (3) running 6x more requests at almost
the same service latency vs. the CPU, and thus amortizing
the static energy. The HDSearch-leaf, HDSearch-midtier
and Search-leaf microservices exhibit less energy-efficiency
than the average. These workloads run at a smaller batch
size and/or exhibit high memory divergence (Figure 14). In
HDSearch-leaf, the frontend+OoO only accounts for 39%
of the CPU’s energy, limiting the SIMT energy efficiency
as discussed in Equation 1 and Section III-A2.

On the other hand, CPU-SMT8 only improves energy
efficiency by 5% at a 5x higher service latency cost. This is
because the number of issued instructions and the generated
accesses are the same as in single threaded CPU. Further,
SMT8 partitions the frontend resources per thread and
causes cache serialization of stack segment accesses and
shared heap variables, hindering service latency, whereas
RPU avoids all these issues through SIMT execution.

The main causes of RPU’s 1.44x higher service latency
are four-fold. First, the control SIMT efficiency of some mi-
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Figure 19: RPU and CPU-SMT8 energy efficiency (re-
quests/joule) relative to single threaded CPU (higher is
better)

0
1
2
3
4
5
6
7
8

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDSearch Recommender Post User Average

CPU(SMT-8) RPU(SIMT-32)

Se
rv

ic
e

 L
at

e
n

cy
 R

e
la

ti
ve

 t
o

 C
P

U

Figure 20: RPU and CPU-SMT8 service latency relative to
single threaded CPU (lower is better)

croservices is below 90% (see Figure 11) in which the RPU
serializes the divergent paths and increases service latency.
Second, when CPU threads run consecutively, they prefetch
some shared data to the L1 cache for the incoming threads
running on the same core. In the RPU, many threads are run
in parallel and incur these compulsory misses at the same
time. Third, the L1 access of the RPU is longer (3 vs 8 cy-
cles) as a result of a larger L1 cache size, and ALU instruc-
tion latency is 4x higher due to vector pipeline, increasing
data dependency latency. Fourth, there remains a slight cache
contention occurring in the RPU’s L1 cache for HDSearch-
leaf and Search-leaf even after applying batch tuning.

1) Sensitivity Analysis: We evaluate RPU’s sensitivity to
a number of system parameters:

• Sub-batch interleaving: In the CPU, IPC per thread is
limited, with a range of 0.3-1, similar to those reported
in data center studies [20], [23]. In the RPU, due to
sub-batch interleaving, we are able to improve IPC uti-
lization up to 4x by issuing threads over multiple cycles
to the SIMT lanes. Although we reduced the number
of SIMT lanes by 4x with sub-batch interleaving (i.e.,
from 32 to 8 lanes), we only noticed 4% performance
loss on average, and up to 10% in UniqueID, compared
to full width SIMT lanes.

• Moving atomics to L3: We did not experience slow
down from moving atomics to the L3 cache in the RPU,
likely because our microservices exhibit few atomic
locks per instruction.

• SIMR-aware heap allocation: Our SIMR-aware heap
segment improves the L1 cache throughput for fre-
quently divergent heap segments in HDSearch, where a
1.8x higher throughput was achieved versus the SIMR-
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Figure 21: Metrics that contribute to total service latency.

agnostic heap allocations.
• Majority voting: Majority voting optimizes the branch

prediction for common control flow (92% of the time
threads traverse the same control flow). Still, 8% con-
trol divergence causes some threads to have different
predictions per-batch than they would with a per-thread
prediction (i.e., as in CPUs). Since we predict next PC
per entire batch, we will always have misprediction for
the divergent threads of the other path (see Figure 7
example). Majority voting mitigates the flushes caused
by these inevitable branch mispredictions by optimizing
for the common control flow, and thus improving
overall energy efficiency. However, the majority voting
policy has little impact on performance, as in the case
of divergence both paths are visited anyways, and thus
the branch predictor is always correct.

2) Service Latency Analysis: Despite RPU’s higher L1
access (2.3x), sub-batch interleaving, and ALU and branch
execution latency (4x), some microservices are still able to
achieve service latency close to the CPU, and on average
only 1.44x higher latency. This is because our workloads
are limited by memory latency, with only 20% of the time
with successful instruction retirement [23]. In the RPU,
the memory coalescing reduces on-chip memory traffic,
alleviating contention and minimizing memory latency.
Figure 21 depicts several metrics that explain the relatively
little increase in service latency for the RPU. The average
memory latency has been reduced by 1.33x because 4x less
traffic is generated and a single-hop crossbar interconnect
is employed which help to offset the latency increases in
instructions and cache hits.

3) GPU Performance: We also run our simulation
experiments on an Ampere-like GPU model [123] with the
same software optimization as the RPU (e.g., stack memory
coalescing and batching) and assume that the GPU supports
the same CPU ISA and system calls. For the sake of brevity,
we did not include the per-app results in the figures. On
average, the GPU achieves 28x higher energy efficiency
than the CPU but at 79x higher latency, which aligns with
previous work [36], [37]. This high latency is unacceptable
for QoS-sensitive data center applications [52], [54], [124].
The lower clock frequency and lack of OoO / speculative
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Figure 22: End-to-end tail and average latency for CPU- vs
RPU-based system with and without batch split.

execution contribute to GPU’s higher service latency.

B. System-Level Results

Figure 22 shows the system-level, end-to-end 99% tail
and average latency for CPU-based system and RPU-based
system with and without our batch splitting technique
described in Section III-B5. We scale the QPS load until
reaching the highest maximum throughput at acceptable
QoS and the system saturates. We configure uqsim with
the end-to-end User microservice scenario passing from
Web Server to User to McRouter to Memcached and Storage
in Figure 3. We simulate three CPU server machines with
40 cores. We assume a 90% hit rate of Memcached with
100, 20, 25, 1000 and 60 microseconds latency for User,
McRouter, Memcached, Storage and network respectively.
In the RPU configuration, we replace the CPU servers with
RPU machines consuming the same power budget, i.e.,
assuming 5x higher requests/joule and 1.2x higher latency
as were obtained from chip-level experiments for these
services. Request batching is employed for memcached
in the CPU configuration for epoll system calls to reduce
network processing [120]. To focus our study on processing
throughput we assumed unlimited storage bandwidth for
both CPU and RPU configurations.

From analyzing the end-to-end results in Figure 22 we can
make the following observations. First, the RPU (with batch
splitting) can achieve 4x higher throughput compared to the
CPU (60 vs 15 kQPS) with almost the same tail and average
latency. Second, the batching formation time is amortized
and incurs negligible overhead at both low and high traffic
load. This is due to the fact that the CPU system employs
batching already for memcached. Third, without batch split-
ting on millisecond-scale storage accesses the RPU exhibits
higher average latency than the CPU, as blocked threads are
waiting on the reconvergence point for the other threads that
access the storage. However, RPU without batch splitting
can still attain an acceptable tail latency. Although tail
latency is more important than average latency for QoS
measurements, the batch splitting technique can be beneficial
to ensure predictable response time when unpredictable high
latency episodes occur in large online services [124].



…..
ADD R1,R2 
LD R3,[R1]
…
VMUL vR4,vR5
….
….
….
Jump [0x2356]
….
BR.EQ R4, R5, label1
….
….
XCHG  [R2], R3
REPNE SCASW R8

Original scalar
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…..
VADD vR1,vR2,
LD.V vR3,[vR1]
….
VMUL vR4,vR5
….
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Figure 23: Potential binary transformation of a scalar binary
to a vector version

VI. DISCUSSION

This section discusses alternative solutions, other use
cases, shortcomings, and pitfalls of the SIMR system.

A. RPU vs CPU’s SIMD

A possible alternative to the RPU would be to recom-
pile scalar CPU binaries for execution on the CPU’s ex-
isting SIMD units, e.g., x86 AVX [125], [126] or ARM
SVE [127]. Each request could be mapped to a SIMD lane,
amortizing the frontend overhead, leveraging the latency
optimizations of the CPU pipeline, and executing uniform
instructions on the scalar units [42]. Such a transformation
could be done using a SPMD-on-SIMD compiler, like Intel
ISPC [42], or at the binary-level, as depicted in Figure 23.
However, this solution has three primary shortcomings.
First, it requires a complete recompilation of the microser-
vice code, libraries, and OS system calls. Second, SIMD
units on contemporary CPUs are designed to accelerate
computationally-dense inner loops. The memory system and
vector ISA are not optimized for the branch- and memory-
heavy microservices we focus on in the RPU. As a result,
energy-efficiency and service latency will be negatively
affected. For instance, binary transformation requires serial-
izing existing SIMD instructions in the scalar binary ( D in
Figure 23) and predicate computation cannot take advantage
of branch prediction ( E ). There are 2x more scalar units
than SIMD units [30], [31] on existing CPUs, which will
go unused if the code can be fully vectorized. Finally, many
existing scalar instructions lack a 1:1 mapping with any
vector instruction ( F ), e.g., complex string manipulation,
atomic and OS operations. Based on a manual investigation
in x86 ISA [125], there are 129 AVX instructions, and 463
scalar instructions, thus only a maximum of 27% of the
scalar instructions are represented in the vector ISA.

B. Multi-threaded vs Multi-process Services

Our proposed SIMR system focuses on multi-threaded
services, which are widely used in data centers [25], [128].

However, the rise of serverless computing has made multi-
process microservices more common [17], [129]. In multi-
process services, the separate virtual address spaces can
cause both control flow and memory divergence, even if the
processes use the same executable and read the same data,
which also causes cache-contention issues on contemporary
CPUs. We believe that with user-orchestrated inter-process
data sharing and some modifications to the RPU’s virtual
memory these effects can be mitigated. However, since the
contemporary services we study are all multi-threaded, we
leave such a study as future work.

C. Security Implications

The grouping of concurrent requests for SIMT execution
may enable new vulnerabilities. For instance, a malicious
user may generate a very long query that could affect the
QoS of other short requests or leak control information.
Such attacks can be mitigated in our input size-aware batch-
ing software by detecting and isolating maliciously long
requests, as described in Section III-B1. Another security
vulnerability is the potential for parallel threads to access
each other’s stack data (exploiting the fact that threads’
stack data are adjacent in the physical space). However, as
described in Section III-B2, the RPU’s address generation
unit is able to identify inter-thread stack accesses and throw
an exception if such sharing is not permitted.

D. GPGPU Workloads on RPU

The RPU can seamlessly execute other HPC, GPGPU, and
DL applications that exhibit the SPMD pattern, written in
OpenMP, OpenCL, or CUDA. GPUs are 2-5x more energy
efficient than CPUs [130]–[133], thanks to their simpler
in-order pipeline, lower frequency, and software-managed
caches. However, this energy efficiency comes at the cost of
easy programmability. Developers need to rewrite their code
in a GPGPU programming language and make a heroic effort
to get the most out of the GPU’s compute efficiency [134],
[135]. Recently Nvidia has written its back-end libraries
in hand-tuned machine assembly to improve instruction
scheduling [116] and has proposed complex asynchronous
programming APIs [136] to hide memory latency via
prefetching. Such optimizations are likely necessary due to
the lack of OoO processing. In CPUs, the hardware supports
OoO scheduling with a large instruction window, which
removes these performance burdens from the programmers.
Furthermore, CPU programming supports system calls nat-
urally and does not require CPU-GPU memory copies.

We believe that the RPU takes the best of both worlds.
It can execute GPGPU workloads with the same easy-
to-program interface as CPUs while providing energy
efficiency comparable to a GPU. CPUs typically contain
1-2x 256-bit (assuming Intel AVX) SIMD engines per
core [31], [32] to amortize the frontend overhead. In the
RPU, 8x lanes running in lock step, each with a dedicated



256-bit SIMD engine, can provide a wider 2048-bit SIMD
unit per core, amortizing the frontend overhead even further
and reducing the energy efficiency gap with the GPU. GPUs
will likely remain the most energy efficient for GPGPU
workloads, but we claim RPUs will not be far behind. We
leave an evaluation of the achievable energy efficiency of
GPGPU workloads on RPU as future work.

E. Pitfall: The RPU can be bottlenecked by I/O throughput
A high throughput processor like the RPU requires

high throughput storage and I/O to perform optimally.
In Figure 5, we demonstrate that the off-chip memory
bandwidth will dramatically scale in future years with the
introduction of DRR5, DDR6, and HBM in the data center.
We observe similar trends for I/O standards like PCIe5 and
PCIe6 [137]. 128x PCIe6 lanes per single socket can provide
2 TB/sec of bidirectional I/O bandwidth. Ethernet 400/800
Gb/sec and recent NVMe interface advances will enable
substantial network and storage throughput improvements.

F. Pitfall: SIMR requires a lot of changes
We design the SIMR system so that the SW stack

changes are as minimal as possible. As demonstrated in
Section III-B and Figure 12, only the HTTP server and
some OS system calls are required to change in the software
stack while we keep the programming interface, compiler,
runtime, and ISA unaltered. In fact, data center providers
adopted DL accelerators [9], [46] and changed the entire
software stack for similar outcomes and efficiency.

G. Pitfall: On-premise cost is of paramount importance in
TCO

The capital expenses of servers can be a more important
factor in the Total Cost of Ownership (TCO) of data centers
than power consumption [10]. While we focused our work
on energy efficiency, the RPU system also improves cost
efficiency. As depicted in Table V, the RPU improves
thread density by 5.2× compared to the CPU. A single
socket RPU matches the throughput of six single-threaded
CPU sockets while maintaining acceptable latency.

H. Pitfall: Batching interferes with the TCP protocol
Applying batching on the incoming requests before the

TCP/IP processing can falsely indicate congestion for the
end users, causing an adverse effect on the TCP congestion
avoidance algorithm. To mitigate this issue, we can start ap-
plying batching at the entry of the logic layer (Figure 3) and
bypass the web server (or at least its TCP/IP processing) to
send acknowledgments to the end users as soon as possible.

I. Pitfall: Batching is not desired for interactive services
If the QoS demands of a particular service are not being

met, we can tune the batch size and set a time-out to
decrease latency. In general, if the service cannot tolerate
batching of any size or shows low SIMT efficiency, they
can be executed on the CPUs at lower throughput.

Table VI: GPU vs RPU Terminology

GPU RPU
Grid/Thread Block (1/2/3-dim) SW Batch (1-dim)

Warp HW Batch
Thread Thread/Request
Kernel Service

GPU Core / Streaming MultiProcessor RPU Core / Streaming MultiRequest
SIMT SIMR

CUDA Core Execution Lane

J. RPU vs GPU Terminology

Although RPU and GPU are both SIMT-based hardware,
we decided to use different hardware terminology for the
RPU. Table VI compares Nvidia’s GPU and our terminology.

K. Open Questions

This work has spanned different levels of the system archi-
tecture and software stack to execute data center microser-
vice efficiently. While the anticipated results look promising,
there remain open questions that require further study:

• How much SIMT control efficiency exists in real-
world microservices? Answering this question is critical
because while we claim 92% SIMT efficiency in our
workloads, this might not be the case for more diverse
and complex microservices used by billion-scale users.
We hope this work will encourage the data center
providers to release more information about the thread
similarity and SIMT efficiency of their applications.

• Can we use the existing CPU’s SIMD to run the
microservices rather than relying on the RPU? What
changes are required to make the CPU’s SIMD solution
feasible? If the compilation and ISA barriers discussed
in Section VI-A are resolved, how much performance
and energy efficiency can SIMD achieve?

• We left some interesting architecture and software
challenges unresolved in this work. For example,
improving the SIMT branch prediction to predict the
associated active mask along with the next PC is
an interesting area to explore. Further, our L1 TLB
design suffers from entry duplication, which affects the
effective capacity of the DTLBs. Another interesting
area to explore is building an efficient and transparent
coalescing techniques for the storage and network
traffic with hardware and system call support. We left
other open questions throughout this paper.

VII. RELATED WORK

Server Workloads on GPUs: The most closely related
work to ours are [36], [37], [45]. Agrawal et al. [37]
proposed to run data center server workloads, namely SPEC-
Web benchmarks, in lock-step execution on GPUs to exploit
request similarity. This work achieved significant energy
efficiency, but the authors had to rewrite the workloads
from PHP to CUDA and reported 6000× worse latency.
Similarly, Hetherington et al. [36], [138] run the memcached
workload on a GPU. However the longer request latency,



Table VII: SIMR vs previous SIMT work at a high-level
conceptual view

OoO CPU
ISA

Thread
grain

SW & Workloads
support

GPUs [123] ✗ ✗ Fine Data-parallel
VT [144] ✗ ✗ Fine Data-parallel

GPU+OoO [145] ✓ ✗ Fine Data-parallel
Simty [140] ✗ ✓ Fine Data-parallel
Vortex [139] ✗ ✓ Fine Data-parallel
DITVA [142] ✗ ✓ Fine Data-parallel
MSPS [45] ✓ ✓ N/A Web server

SIMT-X [61] ✓ ✓ Fine Data-parallel

SIMR ✓ ✓ Coarse Data-parallel &
Request-parallel microservices

lack of system calls support, and limited programmability
have hindered wide-spread adoption of GPUs for general
data center workloads.

RISCV-based GPUs: Recent projects, Vortex [139]
and Simty [140], have explored building GPGPUs with a
general purpose ISA like RISC-V. While these projects can
improve a GPU’s applicability to execute CPU binaries,
they still suffer from poor latency optimization.

SIMT+OoO: Agrawal et al. [45] study the SIMT
efficiency of monolithic SPEC-web workloads [141]
written in PHP. Their results indicate the workloads
contain promising control and memory efficiency that can
be executed on SIMT hardware. They claim GPUs are
ill-suited for server applications, so they propose Massively
Parallel Server Processors (MSPS) to run server workloads
on CPU-like SIMT hardware. However, their work lacks
any architectural details and does not tackle the relevant
software challenges (Section III-B). Their focus is limited
to web serving applications and they require compiler
support for reconvergence analysis.

Kalathingal et al. [142], [143] proposed dynamic inter-
thread vectorization architecture (DITVA) to leverage the
implicit similarity that exists across in-order SMT threads
when running data-parallel workloads. Tino et al. [61]
introduced SIMT support to an out of order pipeline
(SIMT-X) to optimize OpenMP workloads. There are
common design concepts between these works and our
RPU micro-architecture. Nonetheless, they lack the software
stack to support the microservices as they focus on data-
parallel workloads. In summery, Table VII compares SIMR
versus previous SIMT work at a high-level conceptual view.

GPU+OoO: Previous work [145]–[149] explored adding
lightweight out-of-order execution in GPUs to further
improve memory latency hiding. Our work is fundamentally
different in that we start with an aggressive OoO CPU
design, then add GPU-like SIMT elements as necessary
to improve energy-efficiency. This approach frees the RPU
from the constraints of the GPU programming model, intro-
ducing several new challenges we must address to efficiently
execute general-purpose pre-compiled microservices. In
addition, prior GPU+OoO approaches still relied on massive
fine-grained multithreading and focused on throughput,
whereas the RPU has significantly fewer threads and bal-

ances throughput and latency, addressing unique challenges
in the memory system. Furthermore, none of the prior work
has made the connection between SIMT and microservices.

Microservices Acceleration: Previous work [18],
[19], [150]–[152] have explored using hardware to
accelerate microservices, with a focus on remote
procedure calls [18], [19], [151], and network data
transformations [150]. These proposals are orthogonal
to our work and could be applied on top of the RPU.
These works focus on helping the CPU remove isolated
bottlenecks, whereas the RPU focuses on a full system
solution intended to replace the CPU.

Exploiting thread/process locality: Previous studies have
proposed exploiting the locality at branch prediction [73],
and caches [92], [93], [153] when running different instances
of the same thread/process on multi-core CPUs. Still, they
incur the same issues of simultaneous multi-threading
discussed in Section III-A2.

VIII. CONCLUSION

Data center computing is experiencing an energy-
efficiency crisis. Aggressive OoO cores are necessary to
meet tight deadlines but waste energy. However, modern
productive software has inadvertently produced a solution
hardware can exploit: the microservice. By subdividing
monolithic services into small pieces and executing many
instances of the same microservice concurrently on the
same node, parallel threads execute similar instruction
control-flow. We exploit this fact to propose our Single
Instruction Multiple Request (SIMR) processing system,
comprised of a novel Request Processing Unit (RPU) and
an accompanying SIMR-aware software system.

The RPU adds Single Instruction Multiple Thread (SIMT)
hardware to a contemporary OoO CPU core, maintaining
single threaded latency close to that of the CPU. As long
as SIMT efficiency remains high, all the OoO structures are
accessed only once for a group of threads, and aggregation
in the memory system reduces accesses. Complimenting
the RPU, our SIMR-aware software system handles the
unique challenges of microservice + SIMT computing
by intelligently forming/splitting batches and managing
memory allocation. Across 15 microservices our SIMR
processing system achieves 5.7x higher requests/joule,
while only increasing single thread latency by 1.44x. We
believe the combination of OoO and SIMT execution opens
a series of new directions in the data center design space,
and presents a viable option to scale on-chip thread count
in the twilight of Moore’s Law.
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