
SIMR: Single Instruction Multiple Request
Processing for Energy-Efficient Data

Center Microservices

Mahmoud Khairy*, Ahmad Alawneh, Aaron Barnes, and Timothy G. Rogers

Purdue University

*Currently at AMD Research

10/3/2022

MICRO 2022

RPU

Home page: https://mkhairy.github.io/
Contact: abdallm@purdue.edu

https://mkhairy.github.io/
mailto:abdallm@purdue.edu

FAQs, Concerns and Pitfalls

2

I have presented this work multiple times, and this slides contain most of the questions and
concerns we received along with our answers. If you do not find your question here, feel free to
contact us.

Mahmoud Khairy – abdallm@purdue.edu
Tim Rogers – timrogers@purdue.edu

mailto:abdallm@purdue.edu
mailto:timrogers@purdue.edu

Question: There have been many CPU solutions that increase throughput
and improve energy efficiency, e.g. Sun’s Niagara, Intel Atom, ARM Cortex,
and others. How much is your RPU solution different from those?

Answer: RPU is better in single-thread latency. Compared to wimpy CPUs, RPU
will be better in either energy efficiency or single-thread latency or both,
thanks to SIMT efficiency.

See next slides.

3

Single Thread Latency

En
er

g
y

ef
fi

ci
en

cy

GPU
(In-Order SIMT 32)

1000s of threads/core

Intel Xeon
AMD EPYC

(OoO SMT2)

ARM ThunderX
(OoO SMT4)

Intel Atom
(In-Order SMT1)

IBM POWER 9
(OoO SMT8)

MIMD
CPUs

SIMT

High SIMT Efficiency

Low SIMT Efficiency

Latency & Energy-Efficiency Tradeoff

RPU
(OoO SIMT [8-32])

10s-100s of threads/core

CPU’s SIMD
(OoO SIMD w/o BP)

10s-100s of lanes/core

Single Thread Latency

En
er

g
y

ef
fi

ci
en

cy

MIMD
CPUs

SIMT

Latency & Energy-Efficiency Tradeoff

RPU
(OoO SIMT [8-32])

10s-100s of threads/core

Better single thread performance

Better energy efficiency

RPU can achieve better energy efficiency vs CPU at the same service latency, or can
exhibit a better service latency at the same energy efficiency

Question: In RPU, you increase single thread latency by 1.44x, how much
CPU’s energy efficiency you can get from 1.44x higher latency? This should
be your baseline

Answer: Good Question! You can relax CPU’s freq to 0.7x to get 1.44x higher
latency. Typically, CPU power decreases by approximately O(k^2) when CPU
frequency decreases by k. Thus, this will lead to 2x power efficiency.

But, we care about energy efficiency not power, energy = power x time. So,
energy = 0.5 * 1.44 = 0.72. Then, energy efficiency = 1/0.72 = 1.38x only.
However, RPU achieves 5.7x energy efficiency.

➔ Then, RPU’s energy efficiency = 5.77/1.38 = 4.1x better than CPU at the
same service latency.
This comparison is missing in the original paper, but we plan to add it in our
extended version of our paper.

6Hölzle, Urs. "Brawny cores still beat wimpy cores, most of the time." (2010).

Question: Similarly, how is wimpy CPU’s latency you can get at the same
RPU’s energy efficiency?

Answer: Intel Atom can get 10x less power at 3x higher latency vs high end
brawny core. This means 3.3x energy efficiency (energy = power * time). But,
to achieve 5.7x energy as RPU, this means we need to scale latency to 5x
down.

➔ Then, RPU is = 5/1.44 = 3.4x better single thread latency than CPU at the
same energy efficiency.

Recall: power efficiency is easy to get, but energy efficiency is hard.

Note: this is a very high level analysis, further simulation-based analysis is
needed to prove our claim.

7https://www.anandtech.com/show/8357/exploring-the-low-end-and-micro-server-platforms/9

Single Thread Latency

En
er

g
y

ef
fi

ci
en

cy

MIMD
CPUs

SIMT

Latency & Energy-Efficiency Tradeoff

RPU
~3.4x better single thread performance

~4x energy efficiency

High end
Brawny core Brawny core @0.7freq

1.44x

5.7x

Low end
Wimpy core

(5.7 energy efficient
@ 5x higher latency)

Question: What about CPU’s SIMD? Can we use SIMD instead of RPU?

Answer: Let’s recall what was SIMD designed for: CPU’s SIMD was designed to
accelerate data-parallel portion of the code (i.e., loops). It was not intended
to execute the entire application (including system calls, initialization, heavily
branching and function calls). Therefore, there are many hurdles that SIMD is
facing to execute microservices. See next slide.

9

What about CPU’s SIMD?
• Recall: CPU’s SIMD was designed to accelerate

data-parallel portion (i.e., loops), not to execute
the serial portion

• Therefore, many existing scalar instructions lack a
1:1 mapping with any vector instruction

• For example, x86 AVX instructions only cover 27% of the
scalar ISA

• Even if the ISA barriers is resolved, two more issues
still exist:

• Non transparency: recompilation/transformation for
the entire SW stack (user code, libs & OS system calls)

• Limited service latency:
• Running coarse-grain threads in fine grain lane context. What if

the scalar code already contains SIMD insts?
• SIMD relies heavily on predicates for conditional branches,

limited support for per-lane branch prediction
10

Concern: Batching Overhead?

Answer:
1- At a very high traffic (with billion-scale services), batching overhead is amortized

2- Batching is already applied in today’s data centers widely (see Google TPUv4*) with
batch sizes of range 8-200 requests. So, the data centers are able to deal with batching
overhead already.

3- The user can set a time-out per service to ensure the request meets the QoS, similar to
previous work on datacenter power management (see refs below)

In general, if the service cannot tolerate batching of any size (we support as small as 8
request batch) or shows low SIMT efficiency, then they can be executed on the CPUs at
lower throughput
See next slides for further details

11
Jouppi, Norman P., et al. "Ten lessons from three generations shaped Google’s TPUv4i: Industrial product." ISCA 2021

Meisner, David, et al. "Power management of online data-intensive services." ISCA 2011

Meisner, David, and Thomas F. Wenisch. "Dreamweaver: architectural support for deep sleep." ASPLOS 2012

12

Key Observation: Modern data centers already rely on request batching heavily

Jouppi, Norman P., et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA
https://memcached.org/blog/nvm-multidisk/
Meisner, David, and Thomas F. Wenisch. "Dreamweaver: architectural support for deep sleep." ASPLOS 2012

From Google’s Production DL Inference

Batching Optimization

Memcached servers

DL Inference Batching Network Batching Batching for deep sleep

Power management

https://memcached.org/blog/nvm-multidisk/

Web Server

UniqueID

URLShorten

TextSearch

Shard1 Shardn....

ImageSearch

Shard1 Shardn

Post
Text

UserTag

Recommender

Shard1 Shardn….

User

SocialGraph

McRouter

Storage

Memcached

McRouter

Storage

McRouter

Storage

Memcached

Memcached

Frontend Logic Caching & Storage

User
Storage

Post
Storage

Graph
Storage

REST/RPC calls
(via Network)

Requests
Received

….

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)

Current System: Selective Batching

Batch

Web Server

UniqueID

URLShorten

TextSearch

Shard1 Shardn....

ImageSearch

Shard1 Shardn

Post
Text

UserTag

Recommender

Shard1 Shardn….

User

SocialGraph

McRouter

Storage

Memcached

McRouter

Storage

McRouter

Storage

Memcached

Memcached

Frontend Logic Caching & Storage

User
Storage

Post
Storage

Graph
Storage

REST/RPC calls
(via Network)

Requests
Received

….

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)
→ Instead of batching individual microservices, we propose batching in all microservices in the graph

Our Proposed System-Level Batching

Batch

Batching Opportunity for Facebook Services

• To amortize batching overhead, you either need:
• (1) High service latency, with low traffic so service latency will amortize batching OR

• (2) High traffic, with low service latency so high traffic will amortize batching OR

• (3) High traffic and high service latency (ideal case)

• Let’s take a look at Facebook in-production services:

15

Note: I was not able to calculate the exact batching overhead as the exact numbers are not shown and SLA (P99 latency) is not specified.

Low traffic but high latency

Low latency but high traffic

Sriraman, Akshitha, Abhishek Dhanotia, and Thomas F. Wenisch. "Softsku: Optimizing server architectures for microservice diversity@ scale.“ASPLOS 2019

Batching Opportunity for Google Services

• (1) from Google in-production ML inference services:
• Batching is widely used for DL inference with size = 8-200 reqs based on traffic and latency

• (2) Further, Google search service has a high service latency (~10s ms) and high
traffic (~100K QPS), so they are a good candidate for batching

16
Jouppi, Norman P., et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA

Quoted: “Clearly,
datacenter applications
limit latency, not batch
size. Future DSAs should
take advantage of larger
batch sizes”

Concern: Batching already has an overhead and batching per-argument size as
you proposed makes the overhead even worse?

Answer: In real world scenarios, most of the arguments/queries length is within a
very small standard deviation.
For example, 90% of Google search queries are 1-5 words.

Small standard deviation query length + high traffic will make the chance of
formulating a batch of similar size very high.

Here, we make an assumption the query length is an indication for the query
service time, If not (in the rare cases), apply batch split technique when needed.

17

Online search queries statistics

18

google queries frequency (2018)

https://backlinko.com/google-keyword-study
https://www.oberlo.com/blog/google-search-statistics#:~:text=The%20latest%20data%20shows%20that,Internet%20Live%20Stats%2C%202022)

Small standard deviation

Very High Traffic

google queries length

https://backlinko.com/google-keyword-study
https://www.oberlo.com/blog/google-search-statistics#:~:text=The%20latest%20data%20shows%20that,Internet%20Live%20Stats%2C%202022

Concern: Where and how do you do batching? per each service in the graph, In
that case you pay the batching overhead multiple times

Answer: Batching can be done in two ways:
1- Per each service in the graph. Each service has its own batch-aware HTTP
server. When the requests are sent from the current node to the next same node
at the same time (since they run at lockstep), requests will also be received almost
at the same time at the next node (reducing the batching overhead at the next
service in the graph). However, networking may have adaptive routing, and with
high traffic, requests can be received at different time to the next service/node
and thus paying the batching overhead multiple times in the graph.

2- Other Solution: Do the batch only once at the begging of the graph (at the
middle-tier service or the load balancer). Then batch/coalesce requests in a single
network request if the follow the same path. Thus, they propagate through the
network graph forward and backward together (i.e. network batching).
Advantages of this approach: improving network throughput, amortizing batching
only once, and provide larger batching windows to do per-argument batching. See
next slides 19

Batch-aware load balancer

20

Load
Balancer

Server 1 Server 3Server 2 Server 4

query 3-5 wordsquery 1-2 words

Server 5

query >5 words

Batch-aware argument-size-aware load balancer

Sending batch
(same network request)

Formulate a batch
1

2

3

4 Sending batch to
the next server

Reqs received at different time

Batch-aware middle-tier

• Similar to previous work, requests are accumulated/batched at a
higher level node in the tree and released after a given timeout to the
leaf node

21
Meisner, David, et al. "Power management of online data-intensive services." ISCA 2011

Meisner, David, and Thomas F. Wenisch. "Dreamweaver: architectural support for deep sleep." ASPLOS 2012

Do the batching at the middle-tier nodes

Concern: Do you batch on TCP/IP processing? Batching on TCP/IP will cause a
negative interaction with TCP congestion avoidance protocol, hurting network
RTT and throughput?

To mitigate this issue, we can bypass batching on the web server (or at least its TCP/IP
processing) to send acknowledgments to the end users as soon as possible. However,
we assume TCP/IP batching after that as the data center provider has full control of
the network stack within the data center so they can tune/adapt the TCP congestion
protocol parameters (timeout and congestion window) along with the batching
timeout/size to ensure there is no negative effect on the network throughput. We did
not study this in detail as it is beyond the scope of the paper. We leave this study for
future work.

Other solution: we can apply batching on network traffic too. So, the RPU driver SW
(with or without HW support) can detect if all the requests are sent to the same
microservice in the graph (i.e., same server IP/socket). If so, send only one network
request. See the below patent:
https://patentimages.storage.googleapis.com/69/ee/89/f8fc1838fefeed/US2022005
0707A1.pdf 22

https://patentimages.storage.googleapis.com/69/ee/89/f8fc1838fefeed/US20220050707A1.pdf

Concern: How can you get high SIMT efficiency on data dependent code?
Batching per length will help on some cases, but what if there is IF condition
based on the query value itself?

Answer: In fact, this is what the 8% control divergence is about. We do not claim
100% efficiency, we achieve 92%. We do have some divergence occurring. For
example, B+ tree traversal, data compression in zlib library, and others, all of these
are dependent on data values and report high control divergence in our traces.

23

Question: How much does the 1.44x higher latency affect your end-to-end
average and tail latency?

Answer: We run our experiments to study the service latency increase effect on
system scale. Requests typically spend 50% of time in networking and 50% in
processing. So, If the processing time (i.e., RPU service latency) increases be 44%,
then this will lead to end-to-end latency increase by 22% as networking time
remains the same. With further tunning and throttling, we can maintain the
almost same latency as CPU systems on system level.

24

System-Level Results (uQsim Simulator)

25

0

5

10

15

20

25

30

35

40

5 10 15 20 30 40 50 60 70 80 90

Ta
il

 L
at

e
n

cy
 (

m
se

c)

Load (kQPS)

CPU (1x throughput, 1x latency)

RPU (4.3x throughput, 1.35x latency) w/o split

RPU (4.3x thoughput, 1.35x latency) w/ split

0
1
2
3
4
5
6
7
8
9

10

5 10 15 20 30 40 50 60 70 80 90

A
vg

 L
at

e
n

cy
 (

m
se

c)

Load (kQPS)

CPU (1x throughput, 1x latency)

RPU (4.3x throughput, 1.35x latency) w/o split

RPU (4.3x throughput, 1.35x latency) w/ split

→RUP’s batching overhead is amortized at low and high loads
→Batch split technique achieves almost the same average and tail latency as CPU system at 4x higher throughput

→Without the batch split technique, we are still able to get a good tail latency

Average latency 99% tail latency

Notes: assume 90% hit rate of Memcached, storage latency = 1 ms & network latency = 60 nsec

Question: What would the threshold be for latency increase that can be
tolerated by data centers?

Answer: Up to 2x slower latency should be tolerated by data center providers. So,
for example, see the high-end CPU in the market (e.g. Intel Xeon or AMD EPYC)
and ensure your proposed energy-efficiency CPU design is not behind by more
than 2x of single thread performance. See Hölzle [MICRO’10].

26Hölzle, Urs. "Brawny cores still beat wimpy cores, most of the time." (2010).

Maximum Tolerated Latency

27Hölzle, Urs. "Brawny cores still beat wimpy cores, most of the time." (2010).

Up to 2x slower latency should be tolerated by data center providers

Quoted:

Question: How latency is only increased by 44%?
4x higher instruction latency, 2x higher L1 access latency and sub batch interleaving should
lead to more than that

Answer: As shown in previous studies, data center workloads exhibit a limited IPC and retire
rate as they are bounded by memory latency. See next slides

28Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale.“ ISCA 2019

Kanev, Svilen, et al. "Profiling a warehouse-scale computer." ISCA 2015

Low IPC in Data Center

29Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale.“ ISCA 2019

Kanev, Svilen, et al. "Profiling a warehouse-scale computer." ISCA 2015

IPC per thread = 0.5-1

Facebook (SMT is On) Google (SMT is off)

For FB, SMT is on, so divide the IPC per 2 to get IPC per thread approximately

Low Retirement Rate in Data Center

30Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale.“ ISCA 2019

Kanev, Svilen, et al. "Profiling a warehouse-scale computer." ISCA 2015

Google (SMT is off)

Retire rate = 10-25% per thread

Facebook (SMT is On)

Memory Latency Improvement

31

Metrics that contribute to total service latency

→Memory Latency improvement (due to less traffic and crossbar) helps to offset the latency increases in
instructions and cache hits

High-Level Service Latency Analysis

32

Retire Waiting for Memory Latency
20 % 80 %

Retire Waiting for Memory Latency

4 * 20 %

1.6 x

Sub batch interleaving +
4x latency + 8% divergence, etc.

80 %

Retire Waiting for Memory Latency ~ 1.4 x

25% improve in mem latency
(Less traffic + single hop xbar)

CPU Execution time

Question: Scaling the threads will be limited by lock contention & critical section?

Answer: Real-world data center workloads are highly optimized to reduce lock
contention by employing lock-free data structure, highly-concurrent memory
allocator and fine-grain locking. See next slides.

33

Note that: this is not just a scalability issue for RPU, it is also an issue for
multi-core CPU designs too.

Perfect Scaling in Real-world Server Workloads (I)

• From Google in-production Search service

34Ayers, Grant, et al. "Memory hierarchy for web search." HPCA 2018

Multi Threaded Servers

9x more cores = 9x more QPS!

Quoted: “The near-perfect
scaling implies that search
has a limited amount of
read/write sharing or
locking in the memory
system”

Perfect Scaling in Real-world Server Workloads (II)

35Wiggins, Alex, and Jimmy Langston. "Enhancing the scalability of memcached." Intel document, (2012)

Another example: Multi-threaded Memcached

4x more cores = 4x more RPS

Quoted: “The approach employs
Concurrent data structures and a
modified cache replacement
strategy to improve scalability.
These data structures enable
concurrent lockless item retrieval
and provide striped lock capability
for hash table updates”

Concern: Weak consistency + NMCA model is hard to program in multi-
threaded applications?

Answer: But, the data center workloads by nature does not need strong
consistency model nor MCA

36

Weak Consistency + NMCA

• Important lesson learned from the GPU space:
• Traditional coherence/consistency model (MOESI/TSO) does not efficiently scale

beyond 100/1K threads

• You need to relax your consistency model to continue thread scaling

• Good news: (key observations)
(1) Data Center workloads rarely communicate and exhibit low locks, read-write
sharing and overall low coherence traffic

(2) Multiple copy atomicity (MCA) is not required by most of the data center
applications. As eventual consistency is widely adopted

• Example: For facebook, It is okay for a friend to see the post update before others

37

So, lets apply more-scalable weak consistency with non multi copy
atomicity model (NMCA)

Ferdman, Michael, et al. "Clearing the clouds: a study of emerging scale-out workloads on modern hardware.“ ASPLOS 2012

Ayers, Grant, et al. "Memory hierarchy for web search." HPCA 201

RPU’s Consistency Model

• Weak Consistency + NMCA. What does this mean?
• Private caches are only guaranteed to be coherent and consistent at barriers & fences

• Move atomics to L3 cache → negligible performance impact as we have low locks

• A simple, relaxed, directory-based coherence protocol with no-transient states or
invalidation acknowledgments → only ack at barrier (see HMG [HPCA’20])

• Multiple threads can share the same store queue per core

• Other good news: some CPU ISAs, like ARMv7 and IBM POWER, already
support a weak consistency model with NMCA

38
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems.“ HPCA 2020

This relaxed memory model allows RPU to scale the number of threads efficiently,
improving thread density by an order of magnitude

Concern: RPU’s 5.7x energy efficiency is a big number? Be realistic!

Answer: There has been previous work showing that they can get 8x energy
efficiency from vectorizing data parallel workloads, like PARSEC and Rodinia, on
real HW CPUs (if the workload is SIMD-friendly). See next slide.

So, my question is: If we can get 8x energy efficiency from vectorizing data
parallel workloads, why we cannot get similar energy efficiency from vectorizing
microservices?! Since both have the same concept: amortize the frontend+OoO.

I showed that frontend+OoO in serial workloads are 75% and we can also
amortize up to 15% of the memory and static energy, this increases our
amortization factor to 90%, apply Amdahl's law, then up to 10x energy efficiency
is achievable.

39
https://link.springer.com/content/pdf/10.1007/s00607-015-0444-y.pdf

Cebrian, Juan M., Magnus Jahre, and Lasse Natvig. "ParVec: vectorizing the PARSEC benchmark suite." Computing 97.11 (2015): 1077-1100.

Example: Vectorizing Blackscholes

40
Cebrian, Juan M., Magnus Jahre, and Lasse Natvig. "ParVec: vectorizing the PARSEC benchmark suite." Computing 97.11 (2015): 1077-1100.

Up to 10x energy efficiency from vectorizing on real HW Intel and ARM CPUs

Frontend+OoO Overhead is Increasing

41

128 ROB entries
6-wide issue

256 ROB entries
8-wide issue

352 ROB entries
12-wide issue

SSE
128-bit

AVX
256-bit

AVX
512-bit

Pipeline OoO is
getting more complex

SIMD is getting wider
to amortize front+OoO

complexity

32-bit ALU
BUT, scalar units remain

the same

As we move forward, the frontend+OoO overhead is getting larger compared
to the scalar units

16 KB I$
3-wide fetch

1K BTB

Frontend is
getting larger

32 KB I$
4-wide fetch

2K BTB

64 KB I$
5-wide fetch

4K BTB

32-bit ALU32-bit ALU

Question: As you increase the core and caches size, the energy of cache access
and data wiring will increase, the bigger the core the large energy you
consume, how do you still get 5.7x energy after that?

Answer: We show in our paper that the dynamic energy per L1 access and L2
access in RPU is higher by a factor of 1.72x and 1.82x respectively than in CPU,
due to the larger cache size. However, the generated traffic reduction and other
energy savings in the frontend will outweigh this energy increase as detailed in
our experimental results.

42

Energy Efficiency of CPU vs RPU

43

𝑪𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚

𝑹𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚
=

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 +𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝟏 − 𝒓 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 +
𝟏

𝒏 ∗ 𝒆𝒇𝒇
𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝒓 ∗ 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝑰𝑴𝑻_𝑶𝒗𝒆𝒓𝒉𝒆𝒂𝒅

SIMT Efficiency=92%

batch size (n) = 8-32

Amortized
factors = 50-90%

→ At high SIMT efficiency, the energy savings from the amortized
metrics greatly outweigh the SIMT management overhead

Larger L1/L2
Caches,

etc.

Concern: Large paper scope, superficial discussion and evaluation? Many
details are missing, especially at system-scale?

Answer: We agree that the scope of the paper is large. We believe that the paper
opens up a wide number of interesting research directions in a relatively
unexplored space. However, to prove that the space is worth exploring, an initial
paper must detail a feasible full-system solution, where each technical
contribution is afforded less space for discussion.

44

Question: In figure 11, why did select 75 batches (2400 requests) for per-
argument batching? This number looks weird.

Answer: We select this number based on the following assumptions:
Assume an online search service with 120 ms latency and receive about 100K
QPS (see refs below)
Now, assume a batch overhead is 20% (close to previous work assuming batching
for power management)

So, batching window = 0.2 * 120 ms = 24 ms
100K QPS means 100 reqs per 1 ms
So reqs received per batching window = 24 * 100 = 2400 reqs

45https://www.barroso.org/publications/TheTailAtScale.pdf
https://www.oberlo.com/blog/google-search-statistics#:~:text=But%20how%20many%20is%20that,searches%20per%20year%20have%20progressed.

https://www.barroso.org/publications/TheTailAtScale.pdf
https://www.oberlo.com/blog/google-search-statistics#:~:text=But%20how%20many%20is%20that,searches%20per%20year%20have%20progressed

Question: Why did you use Accel-Sim not gem5? Where did you get your CPU
configuration from. Your CPU configuration looks impractical?

Answer: We select the simulation tools that we are familiar and more productive
with. In academia, the researcher is free to select his own simulation
infrastructure. After all, the industry does not trust open-source simulators.

We configure our CPU to be similar to previous work and close enough to
industrial designs.

46

Concern: Why SMT_8 shows poor performance and exhibit high latency in your
results (5x higher than single thread performance)?

Answer: Recall, SMT works very well when the threads exhibit dissimilarity during
execution. For example, one thread is compute bound and the other is memory-
bound. In our evaluation, all the threads are running the same
program/microservice (SPMD), so dissimilarity is very rare. Even more, we launch
the threads at the same time making dissimilarity is even harder to exist.

In recent study from Google about in-production search service (ref is below),
they show that enabling SMT_2 on Intel Haswell CPU has led to barely 1.37x
higher throughput (QPS), which indicates service latency has increased by 1.45x.
Scale this number to SMT_8 (8 threads), then service latency is expected to
increase to 4.4x for SMT_8, close to the number that I have in the paper. In fact,
IBM POWER SMT_8 scales better but I do not have enough details about IBM
architecture.

47Ayers, Grant, et al. "Memory hierarchy for web search." HPCA 2018

Question: The rise of serverless computing has made multi-process and
containerized-based microservices more commo. How do you handle multi-
process services in this case?

Answer: In multi-process services, the separate virtual address spaces can cause
both control flow and memory divergence. We believe that with user-
orchestrated inter-process data sharing and some modifications to the RPU’s
virtual memory these effects can be mitigated. However, since the contemporary
services we study are all multi-threaded, we leave such a study as future work.

48

Concern: Security Implications? The grouping of concurrent requests for SIMT
execution may enable new vulnerabilities

Answer: Two security breaches may exist:
(1) a malicious user may generate a very long query that could affect the QoS of
other short requests. Such attacks can be mitigated in our input size-aware
batching software by detecting and isolating maliciously long requests. If this
does not work, our run-time batch split technique can be used as needed

(2) Another security vulnerability is the potential for parallel threads to access
each other’s stack data (exploiting the fact that threads’ stack data are adjacent
in the physical space). However, as described in Section III-B2, the RPU’s address
generation unit is able to identify inter-thread stack accesses and throw an
exception if such sharing is not permitted.

49

Pitfall: The RPU can be bottlenecked by I/O throughput

Answer: we demonstrate that the off-chip memory bandwidth will dramatically
scale in future years with the introduction of DRR5, DDR6, and HBM in the data
center. We observe similar trends for I/O standards like PCIe5 and PCIe6 [137].
128x PCIe6 lanes per single socket can provide 2 TB/sec of bidirectional I/O
bandwidth. Ethernet 400/800 Gb/sec and recent NVMe interface advances will
enable substantial network and storage throughput improvements.

50

PCIe I/O Scaling

51https://www.extremetech.com/computing/293451-pci-express-6-0-with-256gb-s-coming-in-2022

Pitfall: SIMR requires a lot of changes

Answer: We design the SIMR system so that the SW stack changes are as minimal
as possible. Only the HTTP server, HW and some OS system calls are required to
change in the software stack while we keep the programming interface, compiler,
runtime, and ISA unaltered. In fact, data center providers adopted DL
accelerators [9], [46] and changed the entire software stack for similar outcomes
and efficiency.

52

Question: SIMT vs SMT vs SIMD

Answer: In SMT, the entire CPU pipeline is partitioned among the simultaneous
threads. Threads on the same core are executed independently, which fails to
exploit thread similarity and increases single thread latency. SIMT avoids all of
these issues exploiting the fact that threads are running the same instruction
stream and allocate the entire pipeline resources for the same task.

In SIMD, It is up to the programmer/compiler to express the data parallelism in
SIMD vector ISA. However, in SIMT, the programmer can still write the programs
in scalar ISA and the HW will detect convergence opportunities and handle
control and memory divergence transparently.

See next slides.

53
https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

54

SIMD vs SIMT

55

Question: Why do you call it RPU?

Answer: An Accerlator to exploit thread similarity and Request level parallelism
→ Request Processing Unit (RPU)

56

In Literature, RLP is different than TLP

57Computer Architecture: A Quantitative Approach 5th edition (Table of Contents)

Instruction level parallelism (ILP) &
Thread level parallelism (TLP)

Data level parallelism (DLP)

Request level parallelism (RLP) ??

58

Instruction level parallelism (ILP) &
Thread level parallelism (TLP)

Data level parallelism (DLP)

Request level parallelism (RLP)

59

RPU

SISD

MISD

SIMD → SIMT → SIMR

60

MIMD

RPU is build to exploit Request level parallelism in SIMR fashion

If you do not find your question here, feel free to
contact us.

61

Thank You!

