? MICRO 2022

PURDUE

UNIVERSITY .

SIMR: Single Instruction Multiple Request
Processing for Energy-Efficient Data
Center Microservices

Mahmoud Khairy*, Ahmad Alawneh, Aaron Barnes, and Timothy G. Rogers

Purdue University

Home page: https://mkhairy.github.io/ %
Contact: abdallm@purdue.edu Currently at AMD Research 10/3/2022

https://mkhairy.github.io/
mailto:abdallm@purdue.edu

Growth of Hyperscale Data Centers

* The growth of hyperscale data
centers has steadily increased in
the last decade

* The next era of loT and Al

* Challenges:
* Slowing growth of Moore’s law
* High power consumption
* Large carbon footprint

* By 2030, the data centers will 0

gonsurrzje 9% of the total electricity 12 13 13 14 14 15 15 16 16 17 17 16 18 16 16 20 20
eman

— Growth of Hyperscale Data Centers

Number of Data Centers (Worldwide)

https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

Datacenter Power Breakdown

COOLING OVERHEAD
3.00% ® Caches
POWER OVERHEAD .
= B Execution
MISC § B Frontend+000
4.0% ~—
NETWORKING g -
5.0% e
STORAGE Q
2.0% E
=
(V)]
{ =
CPUs 8
61.0% T 40%
DRAM c%
18.0% Q. . i
Serial INT Vectorized FP
workload data intensive
workload
Datacenter Power Breakdown CPU Power Breakdown

(from Google)

25-45% of datacenter power is consumed in CPU’s instruction supply (frontend & O00)

Barroso, Luiz André, and Urs Hélzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018 3
Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems.”" ACM TACO 2016
Notes: in the TACO paper, Execution includes ALU+Reg+000. In the fig above, we exclude the OoO and add it to the frontend. Caches power include dynamic L1/L2/L3 cache power. The nhumbers are collected with McPAT

Frontend+000 Overhead Keeps Increasing

16 KB IS 32 KB IS 64 KB IS

: Frontend is
3-wide fetch 4-wide fetch 5-wide fetch ‘ getting larger
1K BTB 2K BTB 4K BTB

128 ROB entries 256 ROB entries - 352 ROB entries ‘ P.ipeline 000 is
6-wide issue 8-wide issue 12-wide issue getting more complex

SIMD is getting wider

SSE » AVX AVX ‘ to amortize front+0o00
128-bit 256-bit - 512-bit complexity
BUT, scalar units remain
32-bitAly [S 32-bitAaw Il 32-bit AL ‘ e carme

As we move forward, the frontend+000 overhead is getting larger compared
to the scalar units

So, this was the Hardware.
What about Software? What kind of Software
running in the data centers?

1 Application, Millions of Users

“Similar” Request-Level Parallelism

Go gle 1000s of independent requests are all running the same code
Log-in reqs Microservice ()
facebook (“Xy2", “1238") ey

(“john”, “5678") et
(llma98”’ 114444")—

Private Datacenter

(“mah”, “k056”) =——p —= .
C . Single Program
Multiple Data log in microservice

search reqs
(“purdue univ”) =—————p

(“arsenal fc”) =———

E T I: I. | (“elections 2024”) ==——p>

Public Datacenter -
(“stock today”) =———————— —

search microservice

11/

Key Observation #1: Single Program Multiple Data (SPMD) are abundant in the datacenters

Server Workloads on GPU'’s

Key Idea: Exploit SPMD by batching requests and run them on R}'I‘ﬁ‘::v‘arf*‘f‘(;‘r‘e;j:vger";';zrﬁ f;’:('l':'
GPU’s Single Instruction Multiple Thread (SIMT) or CPU’s SIMD

Sandeep R Agrawal Valentin Pistol Jun Pang
s i b Auipin g Oos s
Advantage: Significant energy efficiency (throughput/watts) vs John Tran David Tarjan- Alvin R Lebeck
m u |t i —t h re a d e d C P U johntran@nvidia.com alvl;(;cs.zlL:I:er::u
Rhythm, ASPLOS 2014
Drawbacks: MemcachedGPU: Scaling-up Scale-out Key-value Stores
° (1) —lindering programmability (C++/PHP VS CU DA/OpenCL) Tayler H. Hetherington Mike O’Connor Tor M. Aamodt
The University of British Columbia NVIDIA & UT-Austin The University of British Columbia
[(2) _i m ite d Syste m Ca | I S S u p p O rt taylerh@ece.ubc.ca moconnor@nvidia.com aamodt@ece.ubc.ca
. . M hedGPU, SoCC 2015
 (3) High service latency (10-6000x) emeache ©
[

GPUs tradeoff single threaded optimizations (000,

speculative execution, etc.) in favor of excessive Ispc: A SPMD Compller for High-Performance

CPU Programming

m u |t|th rea d i ng Matt Pharr William R. Mark
* |n SIMD, relying on branch predicates & fine grain context matt pharr@intelcom willam £ mark@iniel.com

ispc, InPar 2012

Recall: GPUs and SIMDs were designed to execute data parallel portion (i.e., loops) not the
entire application

“Slower but enerqgy-efficient wimpy cores only win
for general data center workloads if their single-
core speed is reasonably close to that of mid-range
brawny cores”

Up to 2x slower latency can be tolerated by
data center providers

Urs Holzle
Google SVP

Barroso, Luiz André, and Urs Hoélzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018
Hoblzle, Urs. "Brawny cores still beat wimpy cores, most of the time." IEEE MICRO 2010

SIMT-friendly Microservices

Service ()
(funcl_uService() A
GService () \
{

if (cond){

}
funcl(); /\ J

} else {
func2(); \ (func2_uService() A
}

Q /

Microservices architecture
Monolithic Service +Smaller cache footprint

+Less divergent

Key Observation#2: Microservices reduce the per-thread cache requirement and
minimize control-flow variations between concurrent threads

Batching Optimization

From Google’s Production DL Inference

Production | MLPerf0.7

DNN ms} batchj DNN ms)batchly DNN ms batch

MLPO 7§ 200 g RNNO 60 Resnet50 15 16

MLPI 20 168 g RNN1 10 SSD 100 4

CNNO 10 BERTO 5§ 128 f GNMT 250 16

CNNI1 32§ 32 jBERTI1 10

Table 5. Latency limit in ms and batch size picked for TPUv4i.

DL Inference Batching

Memcached servers Power management

Back-end
server Idle Idle
Core 0

WebServer RabbitMq »» Back-end CDI’E 1
Queue server

Core 2
T 11 % Core 3
Bnd-userfbrowsers iy = evter X
reqtsgset?i;nNt?eSri]na?:SIed -I-i me
Network Batching Batching for deep sleep

Key Observation#3: Modern data centers already rely on request batching heavily

Jouppi, Norman P., et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA 10

https://memcached.org/blog/nvm-multidisk/

Meisner, David, and Thomas F. Wenisch. "Dreamweaver: architectural support for deep sleep." ASPLOS 2012

https://memcached.org/blog/nvm-multidisk/

Off-Chip BW Scaling

——o—Memory-BW-per-Socket
Thread-Count-per-Socket
Bandwidth-per-Thread (~2 GB/sec/thread)

1200
DDR6 600
HBM*
1000 I?
) 500
,/ /512 threads
$ 800 /
d ¢ 400 .
o) , c
&) DDR5-7200 7 3
= . O
= 600 i 300 B
> P v
S Pod 256 threads b=
- y =
[' 4
s 400 DDR5-4800 S 200

4

DDR4-3200
200 Intel Rappid 100
DDR3-1600 Amepere ARM
AMD EPYC

I8tel Skylake Intel Copper

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Key Observation #4: There is available headroom to increase on-chip throughput
(thread count) in the foreseeable future.

11

How to increase on-chip throughput of CPU?

* Direction#1 (industry standard): Add more Chiplets + Cores + SMT x

* Direction#2 (this work): Move to SIMT J

* More energy efficient (throughput/watts)
» Cost-effective (throughput/area)
* Better scalability

Wi

Key ldea
—

“Let’s bring SIMT efficiency to the CPU world!”

SIMT Efficiency

CPU Multi-Core with Simultaneous Multi-Threading

Corel
Threadl Thread2

Reqll Rqul
Fetch & Fetch &
Decode Decode

000
Schedule

Oo0O
Schedule

N
Issue & Issue &

S o
e

Load A Load A

CoreN
ReqgN l

Fetch &
Decode

0]e]0)]
Schedule

Issue &
Dispatch

Ex

Load A

Request Processing Unit (RPU)
SIMT+000 Architecture

Reqs
Batch

Fetch &
Decode

000
Schedule

Issue &
Dlspatch

Amortize
frontend+000
overhead (75%)

Ex]
Lane N
_

Reduce generated
traffic and amortize
cache energy (20%)

Load A only once

SIMT Efticiency

Request Processing Unit (RPU)

CPU Multi-Core with Simultaneous Multi-Threading SIMT+000 Architecture
Corel CoreN
Threadl Thread2 gggcsh \ \ \ \ \ \ \

Requ
Fetch &

‘ Eetch.& I [Decode]

V No need to change SW interface, transparent to Compiler&ISA ;.

V Direct access to 1/Os and natural support for system calls d+000

d (75%
V Acceptable service latency (OoO+speculative pipeline) (7%

V High energy efficiency via exploiting thread similarity and
{Dlspatchl ellmlnatmg redundancy

L e J L Lane N J
Load A Load A Load A Load A only once

Reqll Rqul
{ Fetch & Fetch &]

Decode]

000
Schedule

Issue &

Reduce generated
traffic and amortize
cache energy (20%)

SIMR System Overview

AR

SIMT Fetch & Branch
Optimizer | Decode Pred
000

: RPU HW Dispatch
Batch-Aware : (Latency- & Issue
HTTP Server : Optimized

SIMT Engine) {ecute """" Execute/
Client Requests Batch Similar Requests

(HTTP/RPC calls) (e.q. per API) RPU Core

CPU vs GPU vs RPU

Metric GPU

Core model 000 n-Order 000
Programming General-Purpose CUDA/OpenCL General-Purpose
ISA x86/ARM HSAIL/PTX x86/ARM
System Calls Support Yes No Yes
Thread grain Coarse grain Fine grain Coarse grain
Threads per core Low (1-8) Massive (2K) Moderate (8-32)

Thread model SMT SIMT SIMT

Consistency Variant Weak+NMCA* Weak+NMCA*

Interconnect Mesh/Ring Crossbar Crossbar

*NMCA: non-multi copy atomicity
Ren, Xiaowei, et al. “HMG: Extending cache coherence protocols across modern hierarchical multi-GPU systems." HPCA 2020

The

RPU takes

advantage of the
latency
optimizations

and

programmability

of the CPU

&S
anc

MT efficiency
memory model

SCa

ability of the

GPU

17

Latency & Energy-Efficiency Tradeoff

U
(In-Order SIMT 32)
CPU’s SIMD 1000s of threads/core. g|MIT
——————————) (000 SIMD w/o BP) -
/’/ RPU \\\ 10s-100s of Ianes/c’org -
> l/ (000 SIMT [8-32]) T
S) -
S oo thriao—lS/—co’r?* B High SIMT Efficiency Intel Atom MIMD
% \ ~- -7 _- / (In-Order SMT1) CPUs
> | IBM POWER 9 -
3 (000 SMTS8 -
g ARM ThunderX -
W Intel Xeon (000 SMT4) -

AMD EPYC
(000 SMT2)

Single Thread Latency

Deep Dive into RPU’s Challenges

Deep Dive into RPU’s Challenges

* Control Divergence

A (1111)

System call
10 ns B:RERLD)! C (0011) (10 ms)

D (1111)

* Control divergence wit high latency branch

Reconvergence?

* Memory Divergence

e Cache Contention & Bank Conflicts . 3 L1 cache

Many threads

* Larger execution units & cache resources at the backend
* Higher instruction execution & L1 hit latency

20

Deep Dive into RPU’s Challenges

* Control Divergence

A (1111)

System call
10 ns B:RERT)! C (0011) (10 ms)

D (1111)

* Control divergence wit high latency branch

Reconvergence?

* Memory Divergence

e Cache Contention & Bank Conflicts . 3 L1 cache

Many threads

* Larger execution units & cache resources at the backend
* Higher instruction execution & L1 hit latency

21

HW /SW Stack

Webservice (C++, PHP, ...)

ARM/x86 compiler

CUDA

HTTP server

CUDA compiler

Runtime/libs
(pthread, cstdlib, ..)

Nvidia Triton HTTP server

0S
(Process, VM, 1/0s)

CUDA runtime/libs
(cudalib, tensorRT, ..)

0S
(1/0s management)

CUDA driver
(VM/thread management)

Multi Core CPU

GPU Hardware

CPU SW Stack

GPU SW Stack

Webservice (C++, PHP, ...)
ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

0S
(1/0s management)

RPU driver
(VM/thread management)

RPU Hardware

RPU SW Stack

- For RPU, we keep the SW programming interface as in the CPU

- Some VM&process management system calls are reimplemented in the RPU driver to
be batch-aware

SIMT Control Efficiency

100
90
80
70
60
50
10

SIMT Efficiency (%)

=)

I

-
uniquelD NG

30
20
10 B

T P 8 EF T E O:T E ' B % S ¥

= S 9 i e v e vy £ Qo = £ =

g 5 = Q A @ “ 9 “ hd &

(g+]
g = T % B B B & 5 >
S — S — S —
Memcached Search HDSearch Recommender Post User Average

Microservices

Notes: (1) Batch Size = 32, (2) System Calls are not included, (3) SIMT Eff = scalar-instructions / (batch-instructions * batch-
size), (4) fine-grain locking are assumed

SIMT Control Efficiency (Optimized)

Hm Naive W per-API M per-API + per-Argument-Size (Ideal stack-based)

100

91%

.90 o
§ 80 766
= 70
S g0
Q 50
;,,,‘-z’ 40
w 30
= 20
= 10 "
“w 0

- g o) O S +

ot c & 2 h .9 h .Q_J h Q — d)

5 s 3 i3 o = o i o S 3 < % ': 5 s

s % &£ o2 & o & o § 9 5

© S O g o) -
g =° T ® 3 ® 3B B 5 5 3
= — = — = -

Memcached Search HDImageSearchRecommender Post User Average

Current System: Selective Batching

Frontend | Logic

Caching & Storage
Batchl

| ——— _ MicRouter == Memcached
Requests | User ~, UniquelD | User
Received ‘ S
UserTag torage
>’ Post = McRouter Memcached

Post
Storage

Memcached

Storage

Web Server
] URLShorten
ImageSearch

"
Recommender
REST/RPC calls Shardl (gg m

(via Network) Shardl @8 Shardn | McRouter
TextSearch

Shardl ™ chardn SocialGraph |

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)

SIMR: System-Level Batching

Frontend | Logic Caching & Storage
—_— |
| BCﬂ» McRouter =N hed
R ¢ m— User —] emcacne
equests | ' UniquelD I User
Received ‘ S
—_— UserTag torage
—_— Post s McRouter

Memcached

Post
Storage

Memcached

Storage

|

|

|

|

Web Server |

] URLShorten

ImageSearch :

|

|

"
Recommender
REST/RPC calls Shardl (gg m

(via Network) Shardl @8 Shardn | McRouter
TextSearch

shardl ™ chardn SocialGraph |

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)
-> Instead of batching individual microservices, we propose batching in all microservices in the graph

System-Level Batch Splitting

1. Procedure get_user(int userid)

2. /*first try the cache */

3. data = memcached_fetch("userrow:" + userid)

4. if not data /* SIMT Divergence*/

5. /* not found : request database */

6. data = db_select("SELECT * FROM users
WHERE userid = ?", userid)

7. /* then store in cache until next get */

8. memcached_add("userrow:" + userid, data)

9. end /* SIMT Reconvergence Point*/
10. return data

A (1111)

Storage access

B (0001) (10 ms)

D (1111) Reconvergence?

Control Flow with Active Mask

SP“t@ Wait Millisecond latency

HW /SW Stack

Webservice (C++, PHP, ...)

ARM/x86 compiler

CUDA

HTTP server

CUDA compiler

Webservice (C++, PHP, ...)

Runtime/libs
(pthread, cstdlib, ..)

Nvidia Triton HTTP server

ARM/x86 compiler

0S
(Process, VM, 1/0s)

CUDA runtime/libs
(cudalib, tensorRT, ..)

Batch-aware HTTP server

0S
(1/0s management)

Runtime/libs
(pthread, cstdlib, ..)

CUDA driver
(VM/thread management)

Multi Core CPU

GPU Hardware

0S
1/0s management

RPU driver

(VM/thread management)

CPU SW Stack

GPU SW Stack

RPU Hardware

RPU SW Stack

/ Current PC

Front End Oo0 Execution
1 1 1 e A . y \| Atomics
LPC1 — Normal o Load Queue = .
T,PC2 — SIMT , PRF e r
: Voting Bra[u:h Next PC Branch Reorder Reservation) = [Aee [PC Al |..|Am " L3S DDR
NT, PCn — Predictor predictor | uop Buffer RAT Buffer (RoB) Station(RS) [R1 [l | AGU _] ;l : 9 ‘
Branch —Y [uop [Am 1 [[inst [am | [op|Tag1 [Tag2] R2_{T _ : ' L3% ‘ [DDR 1
Results Flush/Commit | RoB / Fetch& N i AM H [AGU [hID Store Queue : RPU J -
(PC+AM) Commit Decode |_. . i . —————|= A Xbar .
\ _/ " AM] AM | H = Core
T\ ICache AM i AM . . ALU -|-
o AM , AM SIMD PRF _°
Current PC SIMT Corral 7 | ALU CAM1 _ EAMm|
Convergence Control _ = T—|
rLﬁ & Schedul logic logic | - L35 |/Os
. 0 CAMSs H | ALY —
1| "e——— Memary /
_ [~ o [Frasivo Depeteney
. Tag b
:'l \ dﬂt;tFi Overall SoC
S CDB
Active Mask
(AM) RPU Core (SIMT+000)

29

Control Divergence Handling

1.//BBA Basic Block "A"

2.1 (x>0) PC1 | PC2 | PC3 | PC4 || Current | Active | Next PC

3. { PC=2 A (1111) PC (min) mask (BP)

4. |/BBB

5.1 2 2 2 2 2 1111 4

6. else t B (1110) i} 4 4 4(F) 4 1111 6

[C (0001) 6 6 6 8 6 1110 10

5. //BBC 10 10 10 8 8 0001 10

9.) ol D (1111)

10.//BBD 10 10 10 10 10 1111 12
Divergent code example Control Flow with Active Mask MinPC selection policy

Serialize divergent paths
Heuristic-based reconvergence analysis (MinPC policy) — transparent to ISA and compiler

MInSP-PC Heuristic

B per-APIl + per-Argument-Size (ldeal stack-based) B per-APIl + per-Argument-Size (MinSP-PC heuristic)
100
90
e %
:
S 20
5 20
-
= '
N § 2T ¢ & T & T & T & §% §5 g2 R 3B
= g 9 T _C:U vy _C:B Nl _g o = £ g |: = ('U
o o £ Q » Q9 » Q T e o Q
s ° ° & 3B & 3 © S =
£ — £ - £ -

Memcached Search HDImageSearchRecommender Post User Average

Deep Dive into RPU’s Challenges

. A (1111)
* Control Divergence
C (0011) System call

(10 ms)

* Control divergence wit high latency branch

D (1111) Reconvergence?

* Memory Divergence

e Cache Contention & Bank Conflicts . 3 L1 cache

Many threads

* Larger execution units & cache resources at the backend
* Higher instruction execution & L1 hit latency

32

Memory Coalescing Optimizations

Virtual space Physical space
n Ml N
T1 Stack Batch Stack - q ?
Lnt x | T1(x) Load A
Hardware d A
Int y T2(x) Load A Loa v
T2 Stack TLSBu.f,zortan Load A
Atx] |——oPPle | Tn(x) Independent threads execution (CPU)
It y i)
s 0 ;e
T1 T2 T3
[Int x| Tn(y)
Int y \
Code Seg Code Seg Load A only once
Data Seg Data Seg L % A and broadcast
0a
Heap Seg Heap Seg SIMT execution with MCU

HW memory coalescing unit (MCU) for

Stack segment coalescing with data interleaving Heap & Data segments 33

Traffic Reduction

. CPU Traffic
0.9
0.8
w 0.7 cache contention
s 0.6 & bank conflicts
9 0.5
<
S 04
= 0.3
0.2 I I
ox | m B i 1 = N
, i B B B
2 = £ 2 = 2 = e = 0 o O [= & &
> g <)) [- 0 -~] c Q. - <= = — =
O O & Q 7 Q 7 Q v ot o Q
% © O o © ! O ! e [= =
s ° 2 5 2 8 2 S = 3
Memcached Search HDSearch Recommender Post User Average

- 4x traffic reduction compared to CPU

Batch Size Tuning to Alleviate Cache Contention

-HDSearch-leaf

-—-McRouter
—-text
—~user
__ 250
N
=
- 200
—
150
100
50
0
L1/Thread

Leaf nodes
' /‘ ~\; /
_ S ! —

~—HDSearch-midtier —~Search-leaf Search-midtier

-—Memcached-backend -—Memcached-memc —-—post

-—URLshort --uniquelD —--userTag
Recommender-midtier Recommender-leaf

——
- —— e — |

[

—0

CPU(SMT1)
64KB

RPU(B32) RPU(B16) RPU(BS8) RPU(B4)
S8KB 16KB 32KB 64KB

Batch Size Tuning to Alleviate Cache Contention

~HDSearch-leaf ~—HDSearch-midtier Search-leaf Search-midtier
-—McRouter -—Memcached-backend -—Memcached-memc —-—post

-text -—URLshort ~uniquelD —-userTag

-—user Recommender-midtier Recommender-leaf

250
N .

L1 MPKI

200 For all microservices, we run at full batch size (32),
except Text-Leaf & ImageSearch-Leaf (batch size = 8)
150 | 4
100 [what about bank conflicts? }
50
0 — — =

CPU(SMT1) RPU(B32) RPU(B16) RPU(BS) RPU(B4)
L1/Thread 64KB 8KB 16KB 32KB 64KB

SIMT-Agnostic Memory Allocator

Assume data are interleaved every 32B

1. Microservice ()

2. //Create a private temporary array in the ~ t€mp array address

3. // heap segment T0 T3 T1 T2

4. int* temp = new int[n]; Oxf6746000 0x78f47000 Ox80764040 0x78f47040

> PR

6. for(inti=0; i<n; i++) L1 cache

7. templi]l=i; //Write to the temp banks E
8.

----------- Severe Bank Conflicts

9. for(int i=0; i<n; i++)
10. sum +=templil; //Read from the temp C++ SIMT-Agnostic Memory Allocator
11.

37

SIMT-Aware Memory Allocator

Assume data are interleaved every 32B

1. Microservice ()
;. //Cl;reate a private temporary array in the To 1 2 13
- // heap segment 0xf6746000 0x78f47020 0x80764040 0x78f47060
4. int* temp = new int[n];
> PR
6. for(inti=0; i<n; i++) L1 cache
7. templi]l=i; //Write to the temp banks
8. e Conﬂict_free

9. for(int i=0; i<n; i++)

10. sum +=templil; //Read from the temp
11. -» ensures start_address%(n*tid) =0

C++ SIMT-Aware Memory Allocator

38

Deep Dive into RPU’s Challenges

* Control Divergence

* Control divergence wit high latency branch

A (1111)

System call

D (1111) Reconvergence?

« EE = |1 cache

threads

* Memory Divergence
e Cache Contention & Bank Conflicts

* Higher instruction execution & L1 hit latency

e More execution units & cache resources at the backend

39

Memory Latency Improvement

B CPU B RPU

Normalized to CPU
I

0
"
a{pi Epc% EF::% %g‘b
> o S 3
a,,.‘:f :f L:r GL g
\ N 2 ﬁ__na &
{\ ra
o 7
> o
L
& o
&

Metrics that contribute to total service latency

-2 Memory Latency improvement (due to less traffic and crossbar) helps to offset the latency increases in
instructions and cache hits

Recall: data center workloads exhibit a limited IPC and retire rate as they are bounded by memory latency

40

Deep Dive into RPU’s Challenges

A (1111)

System call

D (1111) Reconvergence?

« EE = |1 cache

threads

* Control Divergence

* Control divergence wit high latency branch

* Memory Divergence
e Cache Contention & Bank Conflicts

* Higher instruction execution & L1 hit latency
* More execution units & cache resources at the backend

41

Fvaluation

* Analytical Model

 Simulation-based evaluation

* Chip-level evaluation
e System-level evaluation

Energy Efficiency of CPU vs RPU (Analytical Model)

CPU Energy Execution Energy + Memory system Energy + Front_0o00 Energy + Static Energy

RPU Energy pyecution Energy + (1 —r) (Memory system Energy) + n *1eff | Front_000 Energy + r * Memory system Energy + Static Energy| + SIMT_Overhead

\ I
|

Amortized
factors = 50-90%

data locality ratio =75%

batch size (n) = 8-32 Larger L1/L2
MCUs
SIMT Efficiency=92% Active mask
etc.

- an anticipated 2-10x energy efficiency gain can be achieved with RPU vs CPU

43

CPU Dynamic Energy Breakdown

B Memory

B Execution

H Frontend+000

100

90
80
70
60
50
30
20
10

0

40

(%) uonndwnsuo) ASiau3j

Josn

dejlJasn

gjanbiun

HOYSTdN

1X9}

1sod

pieys jeo]

Ja1-3|ppIw

pieys jed|

Ja1-3|ppIw

pieys jed|

J31-3|ppIw

JWaWl

puaoeq

J19INOYIN

User

Post

HDSearch Recommender

Search

Memcached

44

Experimental Setup

Dynamic Chip-level cycle System-level

Instrumentation accurate simulator uservice-interaction simulator

traces

. Throughput
SIMTec (w/ & w/o batching) Accel-Sim 9mp

& latency uQsim

[ISCA 2020] &
McPAT

(x86 PIN-based tool)

[ISPASS 2022] [ISPASS 2019]

} CPU vs RPU
SIMT Efficiency throughput/Watt &

latency
Workloads: Social Network Microservices

Microsuite [IISWC 2018], DeathStarBench [ASPLOS 2020] and In-house benchmarks
Libraries: c++ stdlib, Intel MKL, OpenSSL, FLANN, Pthread, zlib, protobuf, gRPC and MLPack, ...

Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020

Zhang, Yanqi, Yu Gan, and Christina Delimitrou. "ugSim: Scalable and Validated Simulation of Cloud Microservices." ISPASS 2019

Alawneh, Ahmad , et al. "A SIMT Analyzer for Multi-Threaded CPU Applications.” ISPASS 2022

Sriraman, Akshitha, and Thomas F. Wenisch. "y suite: a benchmark suite for microservices." IISWC 2018 45
Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems.“ ASPLOS 2019

Li, Sheng, et al. "McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures." MICRO 2009

End-to-end tail latency &
Max throughput

Simulation Configuration

* Baseline: Single threaded CPU
and SMT8 CPU
 RPU: SIMT-32 (1 batch)

* We ensure both CPU and RPU
have the same pipeline
configuration, frequency, and

memory resources/thread for
SMT8 and our RPU

* CPU & RPU power&area are
estimated at the same
technology node (7-nm)

M =i 3 '|' o b
Metric CPU CPU SMT RPU
Core B-wide B-wide B-wide
Pipeline 1258-entry Ool) 125-entry Qo) 128-entry (al)
Freq 2.5 GHZ 2.0 GHZ 2.0 GHZ
= Cores a8 =0 20
Threads /core 1 SMT-8 SIMT-32 (1 batch)
Total Threads a8 640 640
AIES
Max IPC/core 5 8 64 (issue x lanes)
ALU/Bra Exec Lat l-cvele l-cyele 4-cycle
L1 Inst/core kKB 64K B G4k B
Reg File/ecore 2B 16K B B4k B
KB, B-way, 64Kk B, B-way, 206K B, B-way,
L1 Cache 3 cycles, 1-bank 3 cycles, 3-banks 8 cyvcles, 8-banks
32B /eycle 256BB feycle 2568 feyele
212K B, B-way, 212K B, S-way, 2MB, S8-way,

L2 Cache

12 eycles, 1-bank

1 2-cycles, 2-banks

20 evcles, 2-banks

DRAM

Sx DDRS5-3200,
200 3 Hl.l"ser:

10x DDR57200,
576 B /fsec

10x DDR5-7200,
576 GB/sec

Interconnect

Col) entries/thread

Ox0 Mesh
128, B-wide

11x11 Mesh
16, 1-wide

4040 Crosshar
125, B-wide

L1 capacity /thread

64K B

BRB

Bk B

L1B /eyele/thread

32B /eycle

32B feyele

8B /cyele

memBW /thread

2 B /sec

46

Per-component Area and Peak Power Estimates

* RPU core is 6.3x larger and consumes
4.5x more peak power than the CPU
core; however, the RPU core supports
32x more threads

* The additional overhead of the RPU-only
structures consume 11.8% of the RPU
core.

Table V: Per-component area and peak power estimates

Area Peak Power
Component CPU RPU CPU RPU
T 2 T . T . L
mm2 Core mm-= Core Waii Core Watt Core
Fetch&Decode 0.27 24.3 0.3 4.3 0.39 15.6 0.4 3.6
Branch Prediction 0.01 0.9 0.01 0.1 0.02 0.8 0.02 0.2
Oo0) 0.11 9.9 0.17 2.4 0.85 34 1.45 12.9
Register File 0.14 12.6 2.52 35.8 0.49 19.6 4.26 38
Execution Units 0.25 22.5 2.31 32.8 0.34 13.6 2.51 22.4
Load/Store Unit 0.07 6.3 .34 4.8 0.13 5.2 (.41 3.7
L1 Cache 0.04 3.6 0.22 31 0.09 3.6 0.2 1.8
TLB 0.02 1.8 0.08 1.1 0.06 2.4 0.4 3.6
L2 Cache 0.2 18 0.71 10.1 0.13 5.2 (.24 2.1
Majority Voting 0 0 0.02 0.3 0 0 0.03 0.3
SIMT Optimizer 0 0 0.03 0.4 0 0 0.05 0.4
MCU 0 0 0.02 l'J'_3 0 0 0.01 '[]-l
Ll - Xbar 0 0 l'JI ’H {] () 1.23
T e %
mm2 Clnp mm' Chip Watt Chip Waltt Chip
Total-Allcores 108.8 717.2 140.8 81 245 712.5 224.2 73.7
L3 Cache 71.82 5.5 7.82 4.5 0.75 0.2 0.75 0.2
NoC 9.78 6.9 1.72 1 36.52 10.8 7.02 2.3
Memory Cirl 14.64 10.4 23.59 13.6 6.85 2 19.27 6.3
Static Power 49 14.5 53 17.4
Total Chip 141 1739 338.1 304.2

47

Efficiency and Service Latency Results (Simulation)

B CPU(SMT-1) m CPU(SMT-8) m RPU(SIMT-32) Higher Is better

Regs/Joules

6 I I 5.7x
0 --I --I --I --I --I --I --. . --I --I -- --I -- --I N --I

Gh) d) d) G) T OJ Y

5 g o - _‘c" - _‘c" - _‘c" < g ': =

2 o £ @ 2 @ " @ d 9 o Q

O 2 . % 3 % 3 5 = = 2

S = S o S o S S

£ -~ £ -~ £ -
Memcached Search HDSearch Recommender Post User Average

B CPU(SMT-1) m CPU(SMT-8) m RPU(SIMT-32) Lower Is better

.l I L.l | L1 I |] I““*
- EmlemiE m IIII I K1l Em I-II

Service Latency
ONDHOO®

S

) CD GJ 0) 17 >< T — CD

¢ § § £ 5 £ 5 £ 5 &8 i sz 3 & 38
N - S

S 5 £ @ “ @ “ @ a v = @

© O T 5] o< =
S < T ks S © T ks = 5 N
= = = = = =

Memcached Search HDSearch Recommender Post User Average
48

Efficiency and Service Latency Results (Simulation)

B CPU(SMT-1) m CPU(SMT-8) m RPU(SIMT-32) Higher Is better

OJ
%]
-

5.7X

--I
6o
>

User Average

I1 44x
N

ONIP,OOX®

Regs/Joules

McRouter B
backend

RPU system achieves 5.7X higher throughput/Watt while

maintaining acceptable service latency, without
changing the programming SW interface
Il-

Memcached

Service Latency
ONDHOO®

S
© @
- @
(]

(7]
-

GLJ : E CD h GJ L QL) L .";; >< T
5 Q =] = © = © o) o >
= ~ v £ < < o + =
= o = @) 2 ?) o 7)
(G o o o o
B 2 D ks T 5 o k: =
S — S - S —

Memcached Search HDSearch Recommender Post User Average
49

System-Level Results (uQsim Simulator)

——-CPU (1x throughput, 1x latency) -e-CPU (1x throughput, 1x latency)
RPU (4.3x throughput, 1.35x latency) w/o split RPU (4.3x throughput, 1.35x latency) w/o split
RPU (4.3x throughput, 1.35x latency) w/ split 40 RPU (4.3x thoughput, 1.35x latency) w/ split
10
T 9 T P
o 8 2 30
€ 5 =
= — 25
>
2 © e 20
g > 2
3 4 s 15
w 3 = 10
< 2 =
5
0 o

5 10 15 20 30 40 50 60 70 80 90
Load (kQPS)

5 10 15 20 30 40 50 60 70 80 90
Load (kQPS)

- RUP’s batching overhead is amortized at low and high loads
— Batch split technique achieves almost the same average and tail latency as CPU system at 4x higher throughput
- Without the batch split technique, we are still able to get a good tail latency

: 50
Notes: assume 90% hit rate of Memcached, storage latency = 1 ms & network latency = 60 usec

Summary

* Request Similarity is abundant in the data center.

* We start with Oo0O CPU design and augment it with SIMT execution to
maximize chip utilization and exploit the similarity.

* We co-design the software stack to support batching and awareness
of SIMT execution.

51

SIMT efficiency is high in the open-source
microservices we study.

uSuite: A Benchmark Suite for Microservices

We are very interested in evaluating SIMT
control efficiency in proprietary Google

production microservices. tacebook

52

Thank You!
Q&A?

Instruction level parallelism (ILP) &
Thread level parallelism (TLP)

Data level parallelism (DLP)

Request level parallelism (RLP)

53

Back-Up Slides

Motivation & Background Slides

Energy Efficiency Crisis

* By 2030, the data centers will consume 9% of the total electricity demand

9,000 terawatt hours (TWh)

Google's Electricity Use, 2011 to 2019

14 12.4
12

10

~ ENERGY FORECAST 20.9% of projected
Widely cited forecasts suggest that the electricity demand

— total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice.

M Networks (wireless and wired)
B Production of ICT

Consumer devices (televisions,
computers, mobile phones)

B Data centres

5.2

2.6

Terawatt-hours

& N & &

2011 2012 2013 2014 2015 2016 2017 2018 2019

https://robertbryce.com/googles-dominance-fueled-by-zambia-size-amounts-of-electricity/

O ' | | | |) ' U 1 ' '
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

https://www.nature.com/articles/d41586-018-06610-y 26

https://www.nature.com/articles/d41586-018-06610-y
https://robertbryce.com/googles-dominance-fueled-by-zambia-size-amounts-of-electricity/

More Moore!

A Massive Chip Shortage Is Hitting the
1dind Entire Semiconductor Industry
u‘ \ouds By Joel Hruska on December 21, 2020 at 11:15 am

Moore’s Law Is Dead. Now What? Why Can’t We yyst MakeN.l

Shrinking transistors have powered 50 years of advances in computing—but now other
ways must be found to make computers more capable.

Why data centres are the new frontier in the fight against
climate change

https://www.extremetech.com/computing/318554-a-massive-chip-shortage-is-hitting-the-entire-semiconductor-industry

https://www.bloomberg.com/graphics/2021-chip-production-why-hard-to-make-semiconductors/
https://www.marketwatch.com/story/the-semiconductor-shortage-is-here-to-stay-but-it-will-affect-chip-companies-differently-11618678056 57
https://www.zdnet.com/article/the-global-chip-shortage-is-a-bigger-problem-than-everyone-realised-and-it-will-go-on-for-longer-too/
https://arstechnica.com/cars/2021/05/chip-shortage-continues-us-asks-taiwan-to-prioritize-automakers/

Solution: Hardware/Software Co-Design
(Accelerators)

Potential Server Spending Over The Mext Ten Years

mCPU N Memory M Storage W Other B Accelerator

140
£112
SE4

356

Server Bill of Materials (Billions, USD)

$28

30

2020

https://research.ark-invest.com/hubfs/1 Download Files ARK-Invest/White Papers/ARK%E2%80%93Invest Bigldeas 2021.pdf?hsCtaTracking=4e1a031b-7ed7-4fb2-
929c¢-072267eda5fc%7Cee55057a-bc7b-441e-8b96-452eclefe34c

58

https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/White_Papers/ARK%E2%80%93Invest_BigIdeas_2021.pdf?hsCtaTracking=4e1a031b-7ed7-4fb2-929c-072267eda5fc%7Cee55057a-bc7b-441e-8b96-452ec1efe34c

Solution: Hardware/Software Co-Design
(Accelerators)

. mongoDB.

Software owoLue Ivgl

| O “ VICE ‘ MICR MICROSERVICE ‘I m

s 8\{: MICROSERVICE | | MICROSERVY]; CE MIiRDSERVICE ‘ ’_. R P C

. O< ‘ | |||||||||||| ‘—t CROSERVICE H g

o e e e |
L 1
Learning @ @ Microservices
Hardware
2iit

C -
| -
C L)
C =

i'i i'i i'i i'i

TPU

VCU

Accelerators

59

Microservices Architecture

The microservices architecture has become a de facto standard for developing large-scale
web applications.

MONGQLITHIC .

| | | * Scalability
“ MICROSERVICE ‘ MICROSERVICE MICROSERVICE * Modularity
i I I e Easy to maintain/debugging
BUSINESS e Different programming languages
LOGIC MICROSERVICE MICROSERVICE MICROSERVICE ‘ _ =
] l * Loose-coupling, reliability
* Owned by a small team
DATA MICROSERVICE ‘ *» | MICROSERVICE ‘
LAYER
‘ Drawbacks:
MICROSERVICE ‘ MICROSERVICE ‘ Network processing overhead
Ul * High context-switching overhead
@ % e Complex cluster management
https://www.tibco.com/reference-center/what-is-microservices-architecture 60

Yu Gan et al., “An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems”, ASPLOS 2021

https://www.tibco.com/reference-center/what-is-microservices-architecture

Reality is Much Complex

Twitter

Microservices graph of large cloud services
Recent increased interest in “Nanoservices”

Image source: https://www.sigarch.org/reacting-to-new-trends-in-cloud-software/
https://www.bmc.com/blogs/microservice-vs-nanoservice/
Ibanez, Stephen, et al. "The nanoPU: Redesigning the CPU-Network Interface to Minimize RPC Tail Latency." arXiv preprint arXiv:2010.12114 (2020).

61

https://www.sigarch.org/reacting-to-new-trends-in-cloud-software/
https://www.bmc.com/blogs/microservice-vs-nanoservice/

Microservice Example: SocialNetwork

Frontend Logic Caching & Storage

Search :

|

|

I

: Read Home \‘Memcached MongoDB VR g =l
| Timeline pa N 25—

| W~ Memecached 1 MongoDB Yl SRS Gl

Media StPOSt V
Frontend | — orage Index, [Index, Index .

' User timeline
= : MongoDB
w Load NGINX "Aser Redis storage
Balancer = . Timeline Home timeline

I: Storage
| RabbitMQ 1

: ‘

|

|

|

\/

\

—_— llf — e —
py
]
Q
o

Social graph
\Y h \Y DB
I I
| Memcached ["MongoDB Y e EE:
| Social p.amll Write Home [§ 9 edia storage
REST/ RPC calls Graph Timeline : . .
(via Network) ——_ Each uservice runs on its own
CPU/Server

Yu Gan et al., “An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems”, ASPLOS 2019

Server Workloads on CPUSs

* Ferdman [ASPLOS’14], Grant [HPCA’18], Grant [ISCA’21],.....

 Conclusions: CPUs are inefficient in the datacenter

* L3 cache & DRAM BW are underutilized (low MLP)

* ILP is limited (IPC per thread=0.25-1, average is 0.5)

* L3 cache hit rate is low and hardware data prefetchers are ineffective
* “Low coherence & core-to-core communication”

- They suggest an increase in the number of threads on-chip is necessary
to better use these resources

Ferdman, Michael, et al. “Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern Hardware”, APSLOS 2014

Ayers, Grant, et al. “Memory Hierarchy for Web Search”, HPCA 2018

Ayers, Grant, et al. “ AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers”, ISCA 2019

Ayers, Grant, et al. “ Classifying Memory Access Patterns for Prefetching ”, ASPLOS 2020

Gope, et al. “Architectural Support for Server-Side PHP Processing ”, ISCA 2017

Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems." ASPLOS 2019
Kaney, Svilen, et al. "Profiling a warehouse-scale computer." .ISCA 2015

Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale." ISCA 2019.

Sriraman, Akshitha, et al. "Accelerometer: Understanding acceleration opportunities for data center overheads at hyperscale." ASPLOS 2020.

Observations Summary

* All the requests/threads run the “same” program (SPMD)
* Threads rarely communicate

* The control flow are coherent and less divergent
* Instruction and data footprint is getting smaller

* Batching is heavily used in datacenter services

* We need energy-efficient high-throughput system

What does this look like?

Single Instruction Multiple Threads (SIMT) Or SIMD

64

Observations Summary

* All the requests/threads run the “same” program (SPMD)
* Threads rarely communicate

* The control flow are coherent and less divergent
* Instruction and data footprint is getting smaller

* Batching is heavily used in datacenter services

* We need energy-efficient high-throughput system

What does this look like?

Single Instruction Multiple Threads (SIMT) Or SIMD

But, wait, what about service latency? N

More RPU Hardware Details

Transparent Stack Segment Coalescing

Virtual space

SSO

SS1 —

T1 Stack
Int X
Inty

Physical space

If SS access: Batch Stack
TO(x)
1- New SS =SSO T1(x)

TO(y)
Tl
2- New offset = (y)

Offset * BS
+ TID

Offset

HW Address
Generation
Unit (AGU)

Sub-batch Interleaving

Sub-batch interleaving

Sub-batch (Size = 4) Full Batch (Size = 8) Sub-batch (Size = 4)

1 2 3 4 1 2 3 4 5 6 7 n 1 2 3 4

l Dispatch Issue l Issue

> (2 cycles) (1 cycle)

B0G0O

oa8no Sooo Dooao
E3CCEEICIGEI

SIMT Lanes =8 SIMT Lanes =4 SIMT Lanes =4
Utilization = 50% Utilization = 100% Utilization = 100%

- Alleviate divergence, exploit deeper pipeline & fully utilize your IPC utilization
- In our final RPU configuration, SIMT lanes = 8 & max batch size = 32

68

RPU’s LD/ST Unit

Load Queue

Store Queue

Addl

Ox7623

0x8900

Ox8100

head #| PC | Age |ResTag
ea
— 1| 0x8762 | 981 R6
tail 2 0x8786| 982 | R1l
i
—pe| 3 | OX8798 | 985 R2
Memory Age
Dependency —
Predictor Priority
head #| PC |Age| iTag
—*1|0x8730| 983 R1
tail
= ,|2|ox8790| 984 | RO

69

SIMT + Branch Predictor

* The branch predictor operates at the batch granularity, i.e., only one
prediction is generated for all the threads in a batch.

4)
T 'L 4 A
Branch rESl.J":S T > Update Branch Predict Predict once (T or NT)
of threads in NI ’ T Predictor per entire batch
a Batch \ J
NT ”
T Q /

Update (PC+AM) { PCe J

Flush/Commit (PC+AM)

Transparent Deadlock-free Stack-less Convergence
Optimizer

Atomic

Min SPi Decoded?

Current How to select?

1- Current PC = PCi of Min (SPi)

2- If all SPi are equal
Current PC = min (PCi)

3- If deadlock detection (a thread X has
not update PC for m cycles and
frequent atomics are decoded)

— Current PC = X(PC) for k cycles

Weak Consistency + NMCA

* Important lesson learned from the GPU space:

* Traditional coherence/consistency model (MOESI/TSO) does not efficiently scale
beyond 100/1K threads

* You need to relax your consistency model to continue thread scaling

* Good news: (key observations)

(1) Data Center workloads rarely communicate and exhibit low locks, read-write
sharing and overall low coherence traffic

(2) Multiple copy atomicity (MCA) is not required by most of the data center
applications. As eventual consistency is widely adopted

 Example: For facebook, It is okay for a friend to see the post update before others

mm) S0, lets apply more-scalable weak consistency with non multi copy
atomicity model (NMCA)

Ferdman, Michael, et al. "Clearing the clouds: a study of emerging scale-out workloads on modern hardware.” ASPLOS 2012
Ayers, Grant, et al. "Memory hierarchy for web search." HPCA 201

RPU’s Consistency Model

* Weak Consistency + NMCA. What does this mean?

* Private caches are only guaranteed to be coherent and consistent at barriers & fences
* Move atomics to L3 cache = negligible performance impact as we have low locks

* Asimple, relaxed, directory-based coherence protocol with no-transient states or
invalidation acknowledgments = only ack at barrier (see HMG [HPCA’20])

* Multiple threads can share the same store queue per core

This relaxed memory model allows RPU to scale the number of threads efficiently,
improving thread density by an order of magnitude

* Other good news: some CPU ISAs, like ARMv7 and IBM POWER, already
support a weak consistency model with NMCA

Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems.“ HPCA 2020

GPU vs RPU Keywords

GPU RPU
Grid/Thread Block SW Batch
Warp HW Batch
Thread Thread/Request
Kernel Service

GPU Core / Streaming MultiProcessor
(SM)

RPU Core / Streaming MultiRequest
(SM)

Warp Scheduler

Batch Scheduler

Single Instruction Multiple Thread
(SIMT)

Single Instruction Multiple Request
(SIMR)

CUDA core

Execution lane

CPU Inefficiencies and RPU’s Mitigation

Table 4.3. CPU inefhiciencies in the data center

Data center characteristics & CPU in-
efficiency

RPU’s mitigation

Request similarity [155] & high frontend
power consumption [11]

SIMT execution to amortize frontend over-
head

[nter-request data sharing [143]

Memory coalescing and an increase in the
number of threads sharing private caches

Low coherence/locks [142], [143] and even-
tual consistency [180]

Weak memory ordering, relaxed coherence
with non-memory-copy-atomicity & higher
bandwidth core-to-memory interconnect

Low IPC due to frequent frontend stalls and
memory latency [29], [32], [141]-[144]

Multi-thread interleaving

DRAM & L3 BW are underutilized, data
prefetchers are ineffective [30], [142], [143],

[145]

High thread level parallelism (TLP) to fully
utilize BW

Microservice /nanoservice have a smaller
cache footprint [20]

High TLP and decrease L1&L2 cache capac-
ity /thread

75

Miscellaneous

Batching Opportunity for Facebook Services

* To amortize batching overhead, you either need:

* (1) High servi
* (2) High traffi
* (3) High traffi

ce latency, with low traffic so service latency will amortize batching OR
c, with low service latency so high traffic will amortize batching OR
c and high service latency (ideal case)

* Let’s take a look at Facebook in-production services:

pservice | Throughput (QPS) | Req. latency | Insn./query
Web O (100) O (ms) O (10%
Feed1 O (1000) O (ms) O (10”)
Feed2 0 (10) O (s) 0 (10%)
Adsl O (10) O (ms) O (10%)
Ads2 O (100) O (ms) O (107

Cachel O (100K) O (us) 0 (10%)

Cache2 O (100K) O (us) 0 (10%)

}

Low traffic but high latency

Low latency but high traffic

Note: | was not able to calculate the exact batching overhead as the exact numbers are not shown and SLA (P99 latency) is not specified.

77

Sriraman, Akshitha, Abhishek Dhanotia, and Thomas F. Wenisch. "Softsku: Optimizing server architectures for microservice diversity@ scale."ASPLOS 2019

Batching Opportunity for Google Services

* (1) From Google in-production ML inference services:
e Batching is widely used for DL inference with size = 8-20 reqs based on traffic and latency

Production MLPerf 0.7 Quoted: “Clearly,
DNN ms {batch | DNN ms DNN ms batch datacenter applications
MLPO 7 | 200 |[RNNO 60 esnet50 15 16 .
MLP1 20| 168 [RNNIT 10 SSD 100 4 I|.m|t latency, not batch
ICNNO 10 BERTO 5 | 128 JGNMT 250 16 size. Future DSAs should
CNN1 32| 32 IBERTI 10 take advantage of larger

Table 5. Latency limit in ms and batch size picked for TPUv4i. batch sizes”

* (2) Further, Google search service has a high service latency (~¥10s ms) and high
traffic (~100K QPS), so they are a good candidate for batching

78
Jouppi, Norman P, et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA

Batch-aware load balancer

a llll 0 Reqgs received at different time

Sending batch Formulate a batch

(same network request) lll l Load
Balancer

query 1-2 words qguery 3-5 words query >5 words

Sending batch to
the next server

Batch-aware argument-size-aware load balancer

79

Low IPC In Data Center

Facebook (SMT is On) Google (SMT is off)

ads |- — - — — n
bigtable |- s — - i
disk - T _
flight-search | — [] - -
H gmail | W .
mail-fe - - — 4
_‘ﬂﬂ HHHH” Hnnnnnnﬂﬂﬂﬂﬂﬂ in%e}u:ingl- - - — -
NEFEENEELNE Hley *pegla2sE9 22355553 indexing2}- HE- -
HU S S RUL searchil - :
§Tv9glzgsvdliscyanagzy 5 £ O |EERELE search2| - :
¥ %o IRz g oz ¥ 155333 search3} W .
g T o5 F7 % = video| = - — |
Our microservices SPEC2006 SPECHNT | CloudSuite Goagle Goaghs 400.perlbench | '] .
[Limaye18]| [Ferdmani2] [Kanev15] [Ayersig) 445.gobmk | ® -
[Maswell) | |Westmers) (Haswell] {Maswell) 429 mcf Y .
471.omnetpp |] -
i)) 433.milcp » , , , .
Figure 6: Per-core IPC across our pservices & prior work (IPC mea- 0.0 0.5 1.0 1.5 20 7 5
sured on other platforms): our tservices have a high 1PC diversity. Instructions per cycle (IPC)
For FB, SMT is on, so divide the IPC per 2 to get IPC per thread approximately Figure 10: IPC is universally low.

IPC per thread = 0.5-1

Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale.” ISCA 2019
Kanev, Svilen, et al. "Profiling a warehouse-scale computer." ISCA 2015

Low Retirement Rate in Data Center

Facebook (SMT is On) Google (SMT is off)

Retiring m Front-end Bad speculation
Web a2 T i
e 37 S I Retiring Bl Bad speculation
Feea [—1 Front-end bound [EE3 Back-end bound

Ads2 q
Cachel a5 [

milcrose ndloes

Cache2 bigtgl_:rglﬁ
401 bzip2 as . 27 flight-search
403 gcc 20 T 54 ng'IEI“
429.mcf SIS 86 gmail-fe
§ 445 gobmk 40 TR) o indexingl
< 456 . hmmer 7o TN indexingz
E _ 458 sjeng a8 T n & searchl
wi AB2.libguantum 13 B Ed
464.h264ref 73 L1 [FREG search
471.omnetpp 13 WFE S 75 5ed f‘:h3
473 astar 5 [7 | 27 a1 video
483 xalancbmk 3 13 K] 54
Ads 14 TR 58 400.perlibench
Bigtable 16 T 58 445.gobmk
_ Disk 13 T 56 429 mcf
-l Flightvsearch 17 37 K 53 471.omnetpp
E % Gm{ing 18 T 53 433.mile
i % Indexingl :.: T : 58 N [] Zﬂ 40 ED ED]_Dﬂ 12{]
% == Indexing2 13 ST - 64 . .
8 Searchi | S s — Pipeline slot breakdown (%)
Search3 T — .
_ Video | 2z mme—: soem—— Figure 6: Top-level bottleneck breakdown. SPEC CPU2006
$7% searchileat 2 —— 29 benchmarks do not exhibit the combination of low retirement
L .
52 rates and high front-end boundedness of WSC ones.
0 20 40 60 80 100

Pipeline slot breakdown (%)

Retire rate = 10-25% per thread

Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale.” ISCA 2019
Kanev, Svilen, et al. "Profiling a warehouse-scale computer." ISCA 2015

31

Perfect Scaling in Real-world Server Workloads (I)

* From Google in-production Search service

9x more cores = 9x more QPS!

0 =

=l

Nomalized QPS
I

L
|

| =
I

| | | | | ! !
B 16 24 32 40 48 36 64
Number of cores (SMT off)

Multi Threaded Servers

Ayers, Grant, et al. "Memory hierarchy for web search." HPCA 2018

i
T

Quoted: “The near-perfect
scaling implies that search
has a limited amount of

read/write sharing or
locking in the memory
system”

82

Perfect Scaling in Real-world Server Workloads (I1)

Another example: Multi-threaded Memcached

4x more cores = 4x more RPS

Core Scaling - 0S1.6(base) vs Modified OS(bags)

35 Quoted: “The approach employs
: > Concurrent data structures and a
. // modified cache replacement
E 1: e strategy to improve scalability.
Z / These data structures enable
1 ¢ concurrent lockless item retrieval
0': /. - and provide striped lock capability
sr s b s heslom e e bas e 1T for hash table updates”
csmsrrsmbrdon] 07| bed 12| hem heE im[|

Number of cores (-t)

Figure 14 - Maximum throughput with a median RTT < 1ms SLA as core counts increase

Wiggins, Alex, and Jimmy Langston. "Enhancing the scalability of memcached." Intel document, (2012) 83

I 64K I-Cache 4 way

instructions

Vertically Threaded

INTEGER

Integer Rename

v ¥V ¥ ¥V ¥

I Schedulers

Integer Physical Register File

. A 2N 2 2

2x AGUs | 4x ALUs

6 ops dispatched

Branch Prediction

AMDZ1

SMT OVERVIEW

micro-ops

FLOATING
POINT

Floating Point Rename |

v
Scheduler |
1 1 |
FP Register File |
vV Vv VvV ¥

MULl ADD MULl ADD |

8 Way

32K D-Cache

512K
< L2 (1+D) Cache
8 Way

15 | HOT CHIPS 28 | AUGUST 23, 2016

4 All structures fully available in 1T mode

4 Front End Queues are round robin with
priority overrides

4 Increased throughput from SMT

. Competitively shared structures
I Competitively shared and SMT Tagged

Competitively shared with Algorithmic Priority
B sStatically Partitioned

Thank You!
Q&A?

Software

Deep neural network ARCHITECTURE

\\\\\\\\\\\\\\\\\\\\ : : 1 v
“ MICROSERVICE ‘ MICROSERVICE MICROSERVICE

. mongoDB.
8

o l l l
% BUSINESS
Ve LOGIC MICROSERVICE MICROSERVICE MICROSERVICE & R P C

y o d \:,'.-{‘
— DATA MICROSERVICE ‘—r MICROSERVICE ‘
LAYER

MICROSERVICE MICROSERVICE ‘

QOO0

L 4

Learning @ @ Microservices

Hardware

PP R
sddd

TPU VCU

Accelerators .

