
SIMR: Single Instruction Multiple Request
Processing for Energy-Efficient Data

Center Microservices

Mahmoud Khairy*, Ahmad Alawneh, Aaron Barnes, and Timothy G. Rogers

Purdue University

*Currently at AMD Research 10/3/2022

MICRO 2022

RPU

Home page: https://mkhairy.github.io/
Contact: abdallm@purdue.edu

https://mkhairy.github.io/
mailto:abdallm@purdue.edu

Growth of Hyperscale Data Centers

• The growth of hyperscale data
centers has steadily increased in
the last decade

• The next era of IoT and AI

• Challenges:
• Slowing growth of Moore’s law
• High power consumption
• Large carbon footprint
• By 2030, the data centers will

consume 9% of the total electricity
demand

2https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

Datacenter Power Breakdown

3Barroso, Luiz André, and Urs Hölzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018

Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems." ACM TACO 2016

Notes: in the TACO paper, Execution includes ALU+Reg+OoO. In the fig above, we exclude the OoO and add it to the frontend. Caches power include dynamic L1/L2/L3 cache power. The numbers are collected with McPAT

25-45% of datacenter power is consumed in CPU’s instruction supply (frontend & OoO)

Datacenter Power Breakdown
(from Google)

CPU Power Breakdown

0

20

40

60

80

100

Serial INT
workload

Vectorized FP
data intensive

workload

Caches

Execution

Frontend+OoO

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
%

)

75%

40%

Frontend+OoO Overhead Keeps Increasing

4

128 ROB entries
6-wide issue

256 ROB entries
8-wide issue

352 ROB entries
12-wide issue

SSE
128-bit

AVX
256-bit

AVX
512-bit

Pipeline OoO is
getting more complex

SIMD is getting wider
to amortize front+OoO

complexity

32-bit ALU
BUT, scalar units remain

the same

As we move forward, the frontend+OoO overhead is getting larger compared
to the scalar units

16 KB I$
3-wide fetch

1K BTB

Frontend is
getting larger

32 KB I$
4-wide fetch

2K BTB

64 KB I$
5-wide fetch

4K BTB

32-bit ALU32-bit ALU

So, this was the Hardware.
What about Software? What kind of Software

running in the data centers?

5

1 Application, Millions of Users

Log-in reqs

log in microservice

search reqs

search microservice

Private Datacenter

Public Datacenter

Key Observation #1: Single Program Multiple Data (SPMD) are abundant in the datacenters
6

“Similar” Request-Level Parallelism
1000s of independent requests are all running the same code

(“xyz”, “1234”)

(“john”, “5678”)

(“mah”, “ko56”)

(“purdue univ”)

(“arsenal fc”)

(“stock today”)

(“ma98”, “4444”)

(“elections 2024”)

Microservice ()
{

…….
…....
…….

}

Single Program
Multiple Data

Server Workloads on GPU’s

7

• Key Idea: Exploit SPMD by batching requests and run them on
GPU’s Single Instruction Multiple Thread (SIMT) or CPU’s SIMD

• Advantage: Significant energy efficiency (throughput/watts) vs
multi-threaded CPU

• Drawbacks:
• (1) Hindering programmability (C++/PHP vs CUDA/OpenCL)
• (2) Limited system calls support
• (3) High service latency (10-6000x)

• GPUs tradeoff single threaded optimizations (OoO,
speculative execution, etc.) in favor of excessive
multithreading

• In SIMD, relying on branch predicates & fine grain context

Recall: GPUs and SIMDs were designed to execute data parallel portion (i.e., loops) not the
entire application

Rhythm, ASPLOS 2014

MemcachedGPU, SoCC 2015

ispc, InPar 2012

“Slower but energy-efficient wimpy cores only win
for general data center workloads if their single-

core speed is reasonably close to that of mid-range
brawny cores”

8

Urs Hölzle
Google SVP

Barroso, Luiz André, and Urs Hölzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018

Hölzle, Urs. "Brawny cores still beat wimpy cores, most of the time." IEEE MICRO 2010

Up to 2x slower latency can be tolerated by
data center providers

SIMT-friendly Microservices

Key Observation#2: Microservices reduce the per-thread cache requirement and
minimize control-flow variations between concurrent threads

Service ()
{

…....
if (cond){

…..
}

else {
…..

}
…….

}

func1_uService()
{

…..
}

Monolithic Service

uService ()
{

if (cond){
func1();

} else {
func2();

}
}

Microservices architecture
+Smaller cache footprint

+Less divergent

func2_uService()
{

…..
}

10

Key Observation#3: Modern data centers already rely on request batching heavily

Jouppi, Norman P., et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA
https://memcached.org/blog/nvm-multidisk/
Meisner, David, and Thomas F. Wenisch. "Dreamweaver: architectural support for deep sleep." ASPLOS 2012

From Google’s Production DL Inference

Batching Optimization

Memcached servers

DL Inference Batching Network Batching Batching for deep sleep

Power management

https://memcached.org/blog/nvm-multidisk/

Off-Chip BW Scaling

11

Key Observation #4: There is available headroom to increase on-chip throughput
(thread count) in the foreseeable future.

256 threads

512 threads

How to increase on-chip throughput of CPU?

• Direction#1 (industry standard): Add more Chiplets + Cores + SMT

• Direction#2 (this work): Move to SIMT
• More energy efficient (throughput/watts)

• Cost-effective (throughput/area)

• Better scalability

12

13

“Let’s bring SIMT efficiency to the CPU world!”

Key Idea

14

SIMT Efficiency

.......

Load A only once

CPU Multi-Core with Simultaneous Multi-Threading

Ex

Fetch &
Decode

Issue &
Dispatch

Load A

Core1

Req1

OoO
Schedule

Ex

Fetch &
Decode

Issue &
Dispatch

Load A

Req2

OoO
Schedule

Ex

Load A

Fetch &
Decode

OoO
Schedule

Issue &
Dispatch

ReqN

CoreN
Thread2Thread1

Fetch &
Decode

OoO
Schedule

Issue &
Dispatch

Ex
Lane 0

Ex
Lane N

.......

Request Processing Unit (RPU)
SIMT+OoO Architecture

Reqs
Batch

Amortize
frontend+OoO

overhead (75%)

Reduce generated
traffic and amortize
cache energy (20%)

15

SIMT Efficiency

.......

Load A only once

CPU Multi-Core with Simultaneous Multi-Threading

Ex

Fetch &
Decode

Issue &
Dispatch

Load A

Core1

Req1

OoO
Schedule

Ex

Fetch &
Decode

Issue &
Dispatch

Load A

Req2

OoO
Schedule

Ex

Load A

Fetch &
Decode

OoO
Schedule

Issue &
Dispatch

ReqN

CoreN
Thread2Thread1

Fetch &
Decode

OoO
Schedule

Issue &
Dispatch

Ex
Lane 0

Ex
Lane N

.......

Request Processing Unit (RPU)
SIMT+OoO Architecture

Reqs
Batch

Amortize
frontend+OoO

overhead (75%)

Reduce generated
traffic and amortize
cache energy (20%)

√ No need to change SW interface, transparent to Compiler&ISA
√ Direct access to I/Os and natural support for system calls
√ Acceptable service latency (OoO+speculative pipeline)
√ High energy efficiency via exploiting thread similarity and

eliminating redundancy

Batch-Aware
HTTP Server

RPU HW
(Latency-

Optimized
SIMT Engine)

Batch Similar Requests
(e.g. per API)

Client Requests
(HTTP/RPC calls)

Fetch &
Decode

OoO

Execute Execute…….

Dispatch
& Issue

Lockstep
Execution

SIMT
Optimizer

Branch
Pred

RPU Core

SIMR System Overview

16

CPU vs GPU vs RPU

Metric CPU GPU RPU

Core model OoO In-Order OoO

Programming General-Purpose CUDA/OpenCL General-Purpose

ISA x86/ARM HSAIL/PTX x86/ARM

System Calls Support Yes No Yes

Thread grain Coarse grain Fine grain Coarse grain

Threads per core Low (1-8) Massive (2K) Moderate (8-32)

Thread model SMT SIMT SIMT

Consistency Variant Weak+NMCA* Weak+NMCA*

Interconnect Mesh/Ring Crossbar Crossbar

17

The RPU takes
advantage of the
latency
optimizations
and programmability
of the CPU

& SIMT efficiency
and memory model
scalability of the
GPU

*NMCA: non-multi copy atomicity
Ren, Xiaowei, et al. “HMG: Extending cache coherence protocols across modern hierarchical multi-GPU systems." HPCA 2020

Single Thread Latency

En
er

g
y

ef
fi

ci
en

cy

GPU
(In-Order SIMT 32)

1000s of threads/core

Intel Xeon
AMD EPYC

(OoO SMT2)

ARM ThunderX
(OoO SMT4)

Intel Atom
(In-Order SMT1)

IBM POWER 9
(OoO SMT8)

MIMD
CPUs

SIMT

High SIMT Efficiency

Low SIMT Efficiency

Latency & Energy-Efficiency Tradeoff

RPU
(OoO SIMT [8-32])

10s-100s of threads/core

CPU’s SIMD
(OoO SIMD w/o BP)

10s-100s of lanes/core

Deep Dive into RPU’s Challenges

19

• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Larger execution units & cache resources at the backend
• Higher instruction execution & L1 hit latency

Deep Dive into RPU’s Challenges

20

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call
(10 ms)

Reconvergence?

10 ns

• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Larger execution units & cache resources at the backend
• Higher instruction execution & L1 hit latency

Deep Dive into RPU’s Challenges

21

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call
(10 ms)

Reconvergence?

10 ns

HW/SW Stack

22

Webservice (C++, PHP, …)

ARM/x86 compiler

HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(Process, VM, I/Os)

Multi Core CPU

CPU SW Stack

CUDA

CUDA compiler

Nvidia Triton HTTP server

CUDA runtime/libs
(cudalib, tensorRT, ..)

OS
(I/Os management)

CUDA driver
(VM/thread management)

GPU Hardware

Webservice (C++, PHP, …)

ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(I/Os management)

RPU driver
(VM/thread management)

RPU Hardware

GPU SW Stack RPU SW Stack

→ For RPU, we keep the SW programming interface as in the CPU
→ Some VM&process management system calls are reimplemented in the RPU driver to

be batch-aware

0
10
20
30
40
50
60
70
80
90

100

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDSearch Recommender Post UserAverage

SI
M

T
Ef

fi
ci

e
n

cy
 (

%
)

SIMT Control Efficiency

68%

Microservices

Notes: (1) Batch Size = 32, (2) System Calls are not included, (3) SIMT Eff = scalar-instructions / (batch-instructions * batch-
size), (4) fine-grain locking are assumed

0
10
20
30
40
50
60
70
80
90

100

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDImageSearchRecommender Post User Average

SI
M

T
Ef

fi
ci

e
n

cy
 (

%
)

Naive per-API per-API + per-Argument-Size (Ideal stack-based)

SIMT Control Efficiency (Optimized)

68%
76%

91%

Web Server

UniqueID

URLShorten

TextSearch

Shard1 Shardn....

ImageSearch

Shard1 Shardn

Post
Text

UserTag

Recommender

Shard1 Shardn….

User

SocialGraph

McRouter

Storage

Memcached

McRouter

Storage

McRouter

Storage

Memcached

Memcached

Frontend Logic Caching & Storage

User
Storage

Post
Storage

Graph
Storage

REST/RPC calls
(via Network)

Requests
Received

….

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)

Current System: Selective Batching

Batch

Web Server

UniqueID

URLShorten

TextSearch

Shard1 Shardn....

ImageSearch

Shard1 Shardn

Post
Text

UserTag

Recommender

Shard1 Shardn….

User

SocialGraph

McRouter

Storage

Memcached

McRouter

Storage

McRouter

Storage

Memcached

Memcached

Frontend Logic Caching & Storage

User
Storage

Post
Storage

Graph
Storage

REST/RPC calls
(via Network)

Requests
Received

….

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)
→ Instead of batching individual microservices, we propose batching in all microservices in the graph

SIMR: System-Level Batching

Batch

System-Level Batch Splitting

27

1. Procedure get_user(int userid)

2. /* first try the cache */

3. data = memcached_fetch("userrow:" + userid)

4. if not data /* SIMT Divergence*/

5. /* not found : request database */

6. data = db_select("SELECT * FROM users
WHERE userid = ?", userid)

7. /* then store in cache until next get */

8. memcached_add("userrow:" + userid, data)

9. end /* SIMT Reconvergence Point*/

10. return data
User

Storage

Memcached

Millisecond latency

Microsecond latency

Batch

WaitSplit

A (1111)

B (0001)

D (1111)

Storage access
(10 ms)

Reconvergence?

Control Flow with Active Mask

1
2

3

4

5
6

HW/SW Stack

28

Webservice (C++, PHP, …)

ARM/x86 compiler

HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(Process, VM, I/Os)

Multi Core CPU

CPU SW Stack

CUDA

CUDA compiler

Nvidia Triton HTTP server

CUDA runtime/libs
(cudalib, tensorRT, ..)

OS
(I/Os management)

CUDA driver
(VM/thread management)

GPU Hardware

Webservice (C++, PHP, …)

ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(I/Os management)

RPU driver
(VM/thread management)

RPU Hardware

GPU SW Stack RPU SW Stack

RPU HW

29

Control Divergence Handling

Serialize divergent paths
Heuristic-based reconvergence analysis (MinPC policy) – transparent to ISA and compiler

1. / / BBA Basic Block "A"

2. if (x > 0)

3. {

4. / / BBB

5. }

6. else

7. {

8. / / BBC

9. }

10. / / BBD

Divergent code example

PC1 PC2 PC3 PC4 Current
PC (min)

Active
mask

Next PC
(BP)

2 2 2 2 2 1111 4

4 4 4 4(F) 4 1111 6

6 6 6 8 6 1110 10

10 10 10 8 8 0001 10

10 10 10 10 10 1111 12

A (1111)

C (0001)

B (1110)

D (1111)

PC=2

4

8

10

Control Flow with Active Mask MinPC selection policy

0
10
20
30
40
50
60
70
80
90

100

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDImageSearchRecommender Post User Average

SI
M

T
Ef

fi
ci

e
n

cy
 (

%
)

per-API + per-Argument-Size (Ideal stack-based) per-API + per-Argument-Size (MinSP-PC heuristic)

MinSP-PC Heuristic

• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Larger execution units & cache resources at the backend
• Higher instruction execution & L1 hit latency

Deep Dive into RPU’s Challenges

32

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call
(10 ms)

Reconvergence?

10 ns

Memory Coalescing Optimizations

33Stack segment coalescing with data interleaving

HW memory coalescing unit (MCU) for
Heap & Data segments

T1

Load A

T2

Load A

T3

Load A

T4

Load A

Independent threads execution (CPU)

T1 T2

Load A

T3 T4

SIMT execution with MCU

Load A only once
and broadcast

MCU

Virtual space

T1 Stack
Int x
Int y

Physical space

Hardware
Support

TLB mapping

Tn Stack
Int x
Int y

Data Seg

Heap Seg

Batch Stack
T1(x)
T2(x)

...
Tn(x)
T1(y)
T2(y)

...
Tn(y)

Data Seg

Heap Seg

T2 Stack
Int x
Int y

Code SegCode Seg

….

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDSearch Recommender Post User Average

L1
 A

cc
e

ss
e

s

CPU Traffic

Traffic Reduction

cache contention
& bank conflicts

→ 4x traffic reduction compared to CPU

0

50

100

150

200

250

CPU(SMT1) RPU(B32) RPU(B16) RPU(B8) RPU(B4)

L1
 M

P
K

I
HDSearch-leaf HDSearch-midtier Search-leaf Search-midtier

McRouter Memcached-backend Memcached-memc post

text URLshort uniqueID userTag

user Recommender-midtier Recommender-leaf

L1/Thread 64KB 8KB 16KB 32KB 64KB

Leaf nodes

Batch Size Tuning to Alleviate Cache Contention

0

50

100

150

200

250

CPU(SMT1) RPU(B32) RPU(B16) RPU(B8) RPU(B4)

L1
 M

P
K

I
HDSearch-leaf HDSearch-midtier Search-leaf Search-midtier

McRouter Memcached-backend Memcached-memc post

text URLshort uniqueID userTag

user Recommender-midtier Recommender-leaf

L1/Thread 64KB 8KB 16KB 32KB 64KB

Leaf nodes

Batch Size Tuning to Alleviate Cache Contention

For all microservices, we run at full batch size (32),
except Text-Leaf & ImageSearch-Leaf (batch size = 8)

what about bank conflicts?

SIMT-Agnostic Memory Allocator

37

1. Microservice ()

2. //Create a private temporary array in the

3. // heap segment

4. int* temp = new int[n];

5. ………..

6. for(int i=0; i<n; i++)

7. temp[i] = i; //Write to the temp

8. ………..

9. for(int i=0; i<n; i++)

10. sum += temp[i]; //Read from the temp

11. ………..

Severe Bank Conflicts

B0 B1 B2 B3

T0
0xf6746000

temp array address

C++ SIMT-Agnostic Memory Allocator

T3
0x78f47000

T1
0x80764040

T2
0x78f47040

L1 cache
banks

Assume data are interleaved every 32B

SIMT-Aware Memory Allocator

38

1. Microservice ()

2. //Create a private temporary array in the

3. // heap segment

4. int* temp = new int[n];

5. ………..

6. for(int i=0; i<n; i++)

7. temp[i] = i; //Write to the temp

8. ………..

9. for(int i=0; i<n; i++)

10. sum += temp[i]; //Read from the temp

11. ………..

B0 B1 B2 B3

C++ SIMT-Aware Memory Allocator

L1 cache
banks

T0
0xf6746000

T1
0x78f47020

T2
0x80764040

T3
0x78f47060

→ ensures start_address%(n*tid) = 0

Assume data are interleaved every 32B

Conflict-free

• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Higher instruction execution & L1 hit latency
• More execution units & cache resources at the backend

Deep Dive into RPU’s Challenges

39

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call
(10 ms)

Reconvergence?

10 ns

Memory Latency Improvement

40

Metrics that contribute to total service latency

→Memory Latency improvement (due to less traffic and crossbar) helps to offset the latency increases in
instructions and cache hits

Recall: data center workloads exhibit a limited IPC and retire rate as they are bounded by memory latency

• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Higher instruction execution & L1 hit latency
• More execution units & cache resources at the backend

Deep Dive into RPU’s Challenges

41

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call
(10 ms)

Reconvergence?

10 ns

Evaluation

• Analytical Model

• Simulation-based evaluation
• Chip-level evaluation

• System-level evaluation

42

Energy Efficiency of CPU vs RPU (Analytical Model)

43

𝑪𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚

𝑹𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚
=

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 +𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝟏 − 𝒓 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 +
𝟏

𝒏 ∗ 𝒆𝒇𝒇
𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝒓 ∗ 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝑰𝑴𝑻_𝑶𝒗𝒆𝒓𝒉𝒆𝒂𝒅

SIMT Efficiency=92%

batch size (n) = 8-32
data locality ratio =75%

Amortized
factors = 50-90%

→ an anticipated 2-10x energy efficiency gain can be achieved with RPU vs CPU

Larger L1/L2
MCUs

Active mask
etc.

CPU Dynamic Energy Breakdown

44

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

%
)

0
10
20
30
40
50
60
70
80
90

100

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

eI
D

u
se

rT
ag

u
se

r

Memcached Search HDSearch Recommender Post User

Frontend+OoO Execution Memory

Experimental Setup

45

Workloads: Social Network Microservices
Microsuite [IISWC 2018], DeathStarBench [ASPLOS 2020] and In-house benchmarks
Libraries: c++ stdlib, Intel MKL, OpenSSL, FLANN, Pthread, zlib, protobuf, gRPC and MLPack, …

SIMTec
(x86 PIN-based tool)

[ISPASS 2022]

Accel-Sim
[ISCA 2020] &

McPAT

uQsim
[ISPASS 2019]

SIMT Efficiency

Chip-level cycle
accurate simulator

System-level
uservice-interaction simulator

CPU vs RPU
throughput/Watt &

latency

traces
(w/ & w/o batching)

Dynamic
Instrumentation

End-to-end tail latency &
Max throughput

Throughput
& latency

Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020

Zhang, Yanqi, Yu Gan, and Christina Delimitrou. "uqSim: Scalable and Validated Simulation of Cloud Microservices." ISPASS 2019

Alawneh, Ahmad , et al. "A SIMT Analyzer for Multi-Threaded CPU Applications." ISPASS 2022

Sriraman, Akshitha, and Thomas F. Wenisch. "μ suite: a benchmark suite for microservices." IISWC 2018

Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems.“ ASPLOS 2019

Li, Sheng, et al. "McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures." MICRO 2009

Simulation Configuration

46

• Baseline: Single threaded CPU
and SMT8 CPU

• RPU: SIMT-32 (1 batch)

• We ensure both CPU and RPU
have the same pipeline
configuration, frequency, and
memory resources/thread for
SMT8 and our RPU

• CPU & RPU power&area are
estimated at the same
technology node (7-nm)

Per-component Area and Peak Power Estimates

• RPU core is 6.3x larger and consumes
4.5x more peak power than the CPU
core; however, the RPU core supports
32x more threads

• The additional overhead of the RPU-only
structures consume 11.8% of the RPU
core.

47

0
2
4
6
8

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDSearch Recommender Post User Average

CPU(SMT-1) CPU(SMT-8) RPU(SIMT-32)

R
e

q
s/

Jo
u

le
s

5.7x

Lower Is better

Higher Is better

Efficiency and Service Latency Results (Simulation)
Se

rv
ic

e
 L

at
e

n
cy

0
2
4
6
8

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDSearch Recommender Post User Average

CPU(SMT-1) CPU(SMT-8) RPU(SIMT-32)

1.44x

48

0
2
4
6
8

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDSearch Recommender Post User Average

CPU(SMT-1) CPU(SMT-8) RPU(SIMT-32)

R
e

q
s/

Jo
u

le
s

5.7x

Lower Is better

Higher Is better

Efficiency and Service Latency Results (Simulation)
Se

rv
ic

e
 L

at
e

n
cy

0
2
4
6
8

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached Search HDSearch Recommender Post User Average

CPU(SMT-1) CPU(SMT-8) RPU(SIMT-32)

RPU system achieves 5.7x higher throughput/Watt while
maintaining acceptable service latency, without

changing the programming SW interface

1.44x

49

System-Level Results (uQsim Simulator)

50

0

5

10

15

20

25

30

35

40

5 10 15 20 30 40 50 60 70 80 90

Ta
il

 L
at

e
n

cy
 (

m
se

c)

Load (kQPS)

CPU (1x throughput, 1x latency)

RPU (4.3x throughput, 1.35x latency) w/o split

RPU (4.3x thoughput, 1.35x latency) w/ split

0
1
2
3
4
5
6
7
8
9

10

5 10 15 20 30 40 50 60 70 80 90

A
vg

 L
at

e
n

cy
 (

m
se

c)

Load (kQPS)

CPU (1x throughput, 1x latency)

RPU (4.3x throughput, 1.35x latency) w/o split

RPU (4.3x throughput, 1.35x latency) w/ split

→RUP’s batching overhead is amortized at low and high loads
→Batch split technique achieves almost the same average and tail latency as CPU system at 4x higher throughput

→Without the batch split technique, we are still able to get a good tail latency

Average latency 99% tail latency

Notes: assume 90% hit rate of Memcached, storage latency = 1 ms & network latency = 60 usec

Summary

• Request Similarity is abundant in the data center.

• We start with OoO CPU design and augment it with SIMT execution to
maximize chip utilization and exploit the similarity.

• We co-design the software stack to support batching and awareness
of SIMT execution.

51

SIMT efficiency is high in the open-source
microservices we study.

We are very interested in evaluating SIMT
control efficiency in proprietary

production microservices.

52

Instruction level parallelism (ILP) &
Thread level parallelism (TLP)

Data level parallelism (DLP)

Request level parallelism (RLP)

53

RPU

Thank You!
Q&A?

Back-Up Slides

54

Motivation & Background Slides

55

Energy Efficiency Crisis

• By 2030, the data centers will consume 9% of the total electricity demand

56
https://www.nature.com/articles/d41586-018-06610-y

https://robertbryce.com/googles-dominance-fueled-by-zambia-size-amounts-of-electricity/

https://www.nature.com/articles/d41586-018-06610-y
https://robertbryce.com/googles-dominance-fueled-by-zambia-size-amounts-of-electricity/

57

More Moore!

https://www.extremetech.com/computing/318554-a-massive-chip-shortage-is-hitting-the-entire-semiconductor-industry
https://www.bloomberg.com/graphics/2021-chip-production-why-hard-to-make-semiconductors/
https://www.marketwatch.com/story/the-semiconductor-shortage-is-here-to-stay-but-it-will-affect-chip-companies-differently-11618678056
https://www.zdnet.com/article/the-global-chip-shortage-is-a-bigger-problem-than-everyone-realised-and-it-will-go-on-for-longer-too/
https://arstechnica.com/cars/2021/05/chip-shortage-continues-us-asks-taiwan-to-prioritize-automakers/

Solution: Hardware/Software Co-Design
(Accelerators)

58
https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/White_Papers/ARK%E2%80%93Invest_BigIdeas_2021.pdf?hsCtaTracking=4e1a031b-7ed7-4fb2-
929c-072267eda5fc%7Cee55057a-bc7b-441e-8b96-452ec1efe34c

https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/White_Papers/ARK%E2%80%93Invest_BigIdeas_2021.pdf?hsCtaTracking=4e1a031b-7ed7-4fb2-929c-072267eda5fc%7Cee55057a-bc7b-441e-8b96-452ec1efe34c

59

TPU VCU

Hardware

Software

Deep
Learning Microservices

Accelerators

RPU

Solution: Hardware/Software Co-Design
(Accelerators)

Microservices Architecture

Benefits:
• Scalability
• Modularity
• Easy to maintain/debugging
• Different programming languages
• Loose-coupling, reliability
• Owned by a small team

Drawbacks:
• Network processing overhead
• High context-switching overhead
• Complex cluster management

60

The microservices architecture has become a de facto standard for developing large-scale
web applications.

https://www.tibco.com/reference-center/what-is-microservices-architecture
Yu Gan et al., “An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems”, ASPLOS 2021

https://www.tibco.com/reference-center/what-is-microservices-architecture

Reality is Much Complex

Microservices graph of large cloud services
Recent increased interest in “Nanoservices”

61

Image source: https://www.sigarch.org/reacting-to-new-trends-in-cloud-software/
https://www.bmc.com/blogs/microservice-vs-nanoservice/
Ibanez, Stephen, et al. "The nanoPU: Redesigning the CPU-Network Interface to Minimize RPC Tail Latency." arXiv preprint arXiv:2010.12114 (2020).

https://www.sigarch.org/reacting-to-new-trends-in-cloud-software/
https://www.bmc.com/blogs/microservice-vs-nanoservice/

Yu Gan et al., “An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems”, ASPLOS 2019

Microservice Example: SocialNetwork

REST/RPC calls
(via Network) Each uservice runs on its own

CPU/Server

Server Workloads on CPUs

63

• Ferdman [ASPLOS’14], Grant [HPCA’18], Grant [ISCA’21],…..

• Conclusions: CPUs are inefficient in the datacenter
• L3 cache & DRAM BW are underutilized (low MLP)

• ILP is limited (IPC per thread=0.25-1, average is 0.5)

• L3 cache hit rate is low and hardware data prefetchers are ineffective

• “Low coherence & core-to-core communication”

Ferdman, Michael, et al. “Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern Hardware”, APSLOS 2014
Ayers, Grant, et al. “Memory Hierarchy for Web Search”, HPCA 2018
Ayers, Grant, et al. “ AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers”, ISCA 2019
Ayers, Grant, et al. “ Classifying Memory Access Patterns for Prefetching ”, ASPLOS 2020
Gope, et al. “Architectural Support for Server-Side PHP Processing ”, ISCA 2017
Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems." ASPLOS 2019
Kanev, Svilen, et al. "Profiling a warehouse-scale computer." .ISCA 2015
Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale." ISCA 2019.
Sriraman, Akshitha, et al. "Accelerometer: Understanding acceleration opportunities for data center overheads at hyperscale." ASPLOS 2020.

→ They suggest an increase in the number of threads on-chip is necessary
to better use these resources

Observations Summary

• All the requests/threads run the “same” program (SPMD)

• Threads rarely communicate

• The control flow are coherent and less divergent

• Instruction and data footprint is getting smaller

• Batching is heavily used in datacenter services

• We need energy-efficient high-throughput system

Single Instruction Multiple Threads (SIMT) Or SIMD

64

What does this look like?

Observations Summary

• All the requests/threads run the “same” program (SPMD)

• Threads rarely communicate

• The control flow are coherent and less divergent

• Instruction and data footprint is getting smaller

• Batching is heavily used in datacenter services

• We need energy-efficient high-throughput system

Single Instruction Multiple Threads (SIMT) Or SIMD

65

What does this look like?

But, wait, what about service latency?

More RPU Hardware Details

66

Virtual space

T0 Stack
Int x
Int y

Physical space

Data Seg

Heap Seg

Batch Stack
T0(x)
T1(x)

...
T0(y)
T1(y)

...

T1 Stack
Int x
Int y

Code Seg

….

SS0

SS1
TLB

Data Seg

Heap Seg

Code Seg

2- New offset =
Offset * BS

+ TID

1- New SS = SS0

If SS access:

HW Address
Generation
Unit (AGU)

Offset

Page

M
C

U

..

Transparent Stack Segment Coalescing

Sub-batch Interleaving

68

→ Alleviate divergence, exploit deeper pipeline & fully utilize your IPC utilization
→ In our final RPU configuration, SIMT lanes = 8 & max batch size = 32

1 2 3 4

Sub-batch (Size = 4)

Issue
(1 cycle)

1 2 3 4 5 6 7 8

1 2 3 4

5 6 7 8

Full Batch (Size = 8)

SIMT Lanes = 4
Utilization = 100%

Issue
(2 cycles)

1 2 3 4

1 2 3 4

Sub-batch (Size = 4)

SIMT Lanes =8
Utilization = 50%

Dispatch

EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8

Sub-batch interleaving

EX1 EX2 EX3 EX4

1 2 3 4

SIMT Lanes = 4
Utilization = 100%

EX1 EX2 EX3 EX4

RPU’s LD/ST Unit

69

SIMT + Branch Predictor

• The branch predictor operates at the batch granularity, i.e., only one
prediction is generated for all the threads in a batch.

70

Branch
Predictor

Predict once (T or NT)
per entire batch T

Majority
Voting

T
T

T

T
NT
NT

Update PredictBranch results
of threads in
a Batch

Update (PC+AM)

Flush/Commit (PC+AM)
ROB

Commit

PCs

Transparent Deadlock-free Stack-less Convergence
Optimizer

71

How to select?
1- Current PC = PCi of Min (SPi)
2- If all SPi are equal

Current PC = min (PCi)
3- If deadlock detection (a thread X has

not update PC for m cycles and
frequent atomics are decoded)
→ Current PC = X(PC) for k cycles

Select

PC1

PC2

PCn

Current
PC

.

.

.

==

0

1

.

.

.

1

Active
Mask

Atomic
Decoded?Min SPi

Weak Consistency + NMCA

• Important lesson learned from the GPU space:
• Traditional coherence/consistency model (MOESI/TSO) does not efficiently scale

beyond 100/1K threads

• You need to relax your consistency model to continue thread scaling

• Good news: (key observations)
(1) Data Center workloads rarely communicate and exhibit low locks, read-write
sharing and overall low coherence traffic

(2) Multiple copy atomicity (MCA) is not required by most of the data center
applications. As eventual consistency is widely adopted

• Example: For facebook, It is okay for a friend to see the post update before others

72

So, lets apply more-scalable weak consistency with non multi copy
atomicity model (NMCA)

Ferdman, Michael, et al. "Clearing the clouds: a study of emerging scale-out workloads on modern hardware.“ ASPLOS 2012

Ayers, Grant, et al. "Memory hierarchy for web search." HPCA 201

RPU’s Consistency Model

• Weak Consistency + NMCA. What does this mean?
• Private caches are only guaranteed to be coherent and consistent at barriers & fences

• Move atomics to L3 cache → negligible performance impact as we have low locks

• A simple, relaxed, directory-based coherence protocol with no-transient states or
invalidation acknowledgments → only ack at barrier (see HMG [HPCA’20])

• Multiple threads can share the same store queue per core

• Other good news: some CPU ISAs, like ARMv7 and IBM POWER, already
support a weak consistency model with NMCA

73
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems.“ HPCA 2020

This relaxed memory model allows RPU to scale the number of threads efficiently,
improving thread density by an order of magnitude

GPU vs RPU Keywords

GPU RPU

Grid/Thread Block SW Batch

Warp HW Batch

Thread Thread/Request

Kernel Service

GPU Core / Streaming MultiProcessor
(SM)

RPU Core / Streaming MultiRequest
(SM)

Warp Scheduler Batch Scheduler

Single Instruction Multiple Thread
(SIMT)

Single Instruction Multiple Request
(SIMR)

CUDA core Execution lane
74

CPU Inefficiencies and RPU’s Mitigation

75

Miscellaneous

76

Batching Opportunity for Facebook Services

• To amortize batching overhead, you either need:
• (1) High service latency, with low traffic so service latency will amortize batching OR

• (2) High traffic, with low service latency so high traffic will amortize batching OR

• (3) High traffic and high service latency (ideal case)

• Let’s take a look at Facebook in-production services:

77

Note: I was not able to calculate the exact batching overhead as the exact numbers are not shown and SLA (P99 latency) is not specified.

Low traffic but high latency

Low latency but high traffic

Sriraman, Akshitha, Abhishek Dhanotia, and Thomas F. Wenisch. "Softsku: Optimizing server architectures for microservice diversity@ scale.“ASPLOS 2019

Batching Opportunity for Google Services

• (1) From Google in-production ML inference services:
• Batching is widely used for DL inference with size = 8-20 reqs based on traffic and latency

• (2) Further, Google search service has a high service latency (~10s ms) and high
traffic (~100K QPS), so they are a good candidate for batching

78
Jouppi, Norman P., et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA

Quoted: “Clearly,
datacenter applications
limit latency, not batch
size. Future DSAs should
take advantage of larger
batch sizes”

Batch-aware load balancer

79

Load
Balancer

Server 1 Server 3Server 2 Server 4

query 3-5 wordsquery 1-2 words

Server 5

query >5 words

Batch-aware argument-size-aware load balancer

Sending batch
(same network request)

Formulate a batch
1

2

3

4 Sending batch to
the next server

Reqs received at different time

Low IPC in Data Center

80Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale.“ ISCA 2019

Kanev, Svilen, et al. "Profiling a warehouse-scale computer." ISCA 2015

IPC per thread = 0.5-1

Facebook (SMT is On) Google (SMT is off)

For FB, SMT is on, so divide the IPC per 2 to get IPC per thread approximately

Low Retirement Rate in Data Center

81Sriraman, Akshitha, et al. "Softsku: Optimizing server architectures for microservice diversity@ scale.“ ISCA 2019

Kanev, Svilen, et al. "Profiling a warehouse-scale computer." ISCA 2015

Google (SMT is off)

Retire rate = 10-25% per thread

Facebook (SMT is On)

Perfect Scaling in Real-world Server Workloads (I)

• From Google in-production Search service

82Ayers, Grant, et al. "Memory hierarchy for web search." HPCA 2018

Multi Threaded Servers

9x more cores = 9x more QPS!

Quoted: “The near-perfect
scaling implies that search
has a limited amount of
read/write sharing or
locking in the memory
system”

Perfect Scaling in Real-world Server Workloads (II)

83Wiggins, Alex, and Jimmy Langston. "Enhancing the scalability of memcached." Intel document, (2012)

Another example: Multi-threaded Memcached

4x more cores = 4x more RPS

Quoted: “The approach employs
Concurrent data structures and a
modified cache replacement
strategy to improve scalability.
These data structures enable
concurrent lockless item retrieval
and provide striped lock capability
for hash table updates”

84

85

TPU VCU

Hardware

Software

Deep
Learning Microservices

Accelerators

RPU

Thank You!
Q&A?

