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Datacenter Power Breakdown
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(from Google)

25-45% of datacenter power is consumed in CPU’s instruction supply (frontend & O00)

2

Barroso, Luiz André, and Urs Hélzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018
Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems.”" ACM TACO 2016
Notes: in the TACO paper, Execution includes ALU+Reg+000. In the fig above, we exclude the OoO and add it to the frontend. Caches power include dynamic L1/L2/L3 cache power.. The numbers are collected with McPAT



1 Application, Millions of Users

“Similar” Request-Level Parallelism

Go gle 1000s of independent requests are all running the same code
Log-in reqs Microservice ()
facebook (“Xy2", “1238") ey
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search reqs
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Key Observation #1: Single Program Multiple Data (SPMD) are abundant in the datacenters




Server Workloads on GPU'’s

Key Idea: Exploit SPMD by batching requests and run them on R}'I‘ﬁ‘::v‘arf*‘f‘(;‘r‘e;j:vger";';zrﬁ f;’:('l':'
GPU’s Single Instruction Multiple Thread (SIMT) or CPU’s SIMD

Sandeep R Agrawal Valentin Pistol Jun Pang
s i b Auipin g Oos s
Advantage: Significant energy efficiency (throughput/watts) vs John Tran David Tarjan- Alvin R Lebeck
m u |t i —t h re a d e d C P U johntran@nvidia.com alvl;(;cs.zlL:I:er::u
Rhythm, ASPLOS 2014
Drawbacks: MemcachedGPU: Scaling-up Scale-out Key-value Stores
° (1) —lindering programmability (C++/PHP VS CU DA/OpenCL) Tayler H. Hetherington Mike O’Connor Tor M. Aamodt
The University of British Columbia NVIDIA & UT-Austin The University of British Columbia
[ ( 2 ) _i m ite d Syste m Ca | I S S u p p O rt taylerh@ece.ubc.ca moconnor@nvidia.com aamodt@ece.ubc.ca
. . M hedGPU, SoCC 2015
 (3) High service latency (10-6000x) emeache ©
[

GPUs tradeoff single threaded optimizations (000,

speculative execution, etc.) in favor of excessive Ispc: A SPMD Compller for High-Performance

CPU Programming

m u |t|th rea d i ng Matt Pharr William R. Mark
* |n SIMD, relying on branch predicates & fine grain context matt pharr@intelcom willam £ mark@iniel.com

ispc, InPar 2012

Recall: GPUs and SIMDs were designed to execute data parallel portion (i.e., loops) not the
entire application




“Slower but enerqgy-efficient wimpy cores only win
for general data center workloads if their single-
core speed is reasonably close to that of mid-range
brawny cores”

Up to 2x slower latency can be tolerated by
data center providers

Urs Holzle
Google SVP

Barroso, Luiz André, and Urs Hoélzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018
Hoblzle, Urs. "Brawny cores still beat wimpy cores, most of the time." IEEE MICRO 2010



Off-Chip BW Scaling
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Key Observation #2: There is available headroom to increase on-chip throughput
(thread count) in the foreseeable future.




How to increase on-chip throughput of CPU?

* Direction#1 (industry standard): Add more Chiplets + Cores + SMT x

* Direction#2 (this work): Move to SIMT J

* More energy efficient (throughput/watts)
» Cost-effective (throughput/area)
* Better scalability




“Let’s bring SIMT efficiency to the CPU world!”



SIMT Efficiency

CPU Multi-Core with Simultaneous Multi-Threading
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SIMR System Overview

AR

SIMT Fetch & Branch
Optimizer | Decode Pred
000

: RPU HW Dispatch
Batch-Aware : (Latency- & Issue
HTTP Server : Optimized

SIMT Engine) {ecute """" Execute/
Client Requests Batch Similar Requests

(HTTP/RPC calls) (e.q. per API) RPU Core



CPU vs GPU vs RPU

Metric GPU

Core model 000 n-Order 000
Programming General-Purpose CUDA/OpenCL General-Purpose
ISA x86/ARM HSAIL/PTX x86/ARM
System Calls Support Yes No Yes
Thread grain Coarse grain Fine grain Coarse grain
Threads per core Low (1-8) Massive (2K) Moderate (8-32)

Thread model SMT SIMT SIMT

Consistency Variant Weak+NMCA* Weak+NMCA*

Interconnect Mesh/Ring Crossbar Crossbar

*NMCA: non-multi copy atomicity
Ren, Xiaowei, et al. “HMG: Extending cache coherence protocols across modern hierarchical multi-GPU systems." HPCA 2020

The

RPU takes

advantage of the
latency
optimizations

and

programmability

of the CPU

&S
anc

MT efficiency
memory model

SCa

ability of the

GPU
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RPU’s Challenges

* Control Divergence

* Challenge: Control divergence with high latency path

System call
10ns (10 ms)
e Solution: Optimized batching & System-level batch split
Reconvergence?
* Memory Divergence

* Challenge: Cache/TLB contention & bank conflicts

* Solution: Batch tuning, stack/memory coalescing and —
SIMR-aware memory allocation

WERNEERT 11 cache

Many
threads
¢ Larger execution units & cache resources

* Challenge: Higher instruction execution & L1 hit latency

* Solution: Exploit low IPC, less generated traffic and employ sub-batching interleaving



RPU’s Challenges

* Control Divergence

. L S I
* Challenge: Control divergence with high latency path 10 ns V(SIST,,E,‘"
e Solution: Optimized batching & System-level batch split
Reconvergence?

* Me
s Read more detalls in the paper on how we address these challenges

IR L1 cache

ﬁ

e Solution: BatC uning, StaCk/memory coalescing andc
—

SIMR-aware memory allocation Many
threads

* Larger execution units & cache resources
* Challenge: Higher instruction execution & L1 hit latency
* Solution: Exploit low IPC, less generated traffic and employ sub-batching interleaving
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SIMT Control Efficiency

H Naive B Optimized Batching
?100 92%
N
= 80
%)
c 60
9
2 40
S 20
= I i
= 0
W qh) G (8 - y o) - y o) - y o) e -|>-<o 0 - (oY)
9 c £ 2 = 2 = 2 = o > > 9 >
Q = = = ©
3 ¥ E @ % o & o & T 7 S 3
g o T 5 T % B & =
E =2 g =2 g =
Memcached Search HDSearch Recommender Post UserAverage

Notes: (1) Batch Size = 32 & #batches=75, (2) System Calls are not traced, (3) SIMT Eff = scalar-instructions / (batch-instructions * batch-size), (4) fine-grain locking are assumed. Other
assumptions are included in the paper. 14



Efficiency and Service Latency Results (Simulation)
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Efficiency and Service Latency Results (Simulation)
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Summary

* Request Similarity is abundant in the data center.

* We start with Oo0O CPU design and augment it with SIMT execution to
maximize chip utilization and exploit the similarity.

* We co-design the software stack to support batching and awareness
of SIMT execution.

17



SIMT efficiency is high in the open-source
microservices we study.

uSuite: A Benchmark Suite for Microservices

We are very interested in evaluating SIMT
control efficiency in proprietary Google

production microservices. tacebook

18



Thank You!
Q&A?

Instruction level parallelism (ILP) &
Thread level parallelism (TLP)

Data level parallelism (DLP)

Request level parallelism (RLP)

19



Backup Slides



SIMT-friendly Microservices

Service ()
(funcl_uService() A
GService () \ {
{ 1 1 ..
if (cond ){ }
funcl(); /\ /
} else { N
func2(); func2_uService()
} {
Q / .....
} y
Microservices architecture
Monolithic Service +Smaller cache footprint

+Less divergent

Key Observation#3: Microservices reduce the per-thread cache requirement and
minimize control-flow variations between concurrent threads




Batching Optimization

From Google’s Production DL Inference

Production | MLPerf0.7

DNN ms} batchj DNN ms)batchly DNN  ms batch

MLPO 7§ 200 g RNNO 60 Resnet50 15 16

MLPI 20 168 g RNN1 10 SSD 100 4

CNNO 10 BERTO 5§ 128 f GNMT 250 16

CNNI1 32§ 32 jBERTI1 10

Table 5. Latency limit in ms and batch size picked for TPUv4i.

DL Inference Batching

Memcached servers Power management

Back-end
server Idle Idle
Core 0

WebServer RabbitMq »» Back-end CDI’E 1
Queue server

Core 2
T 11 % Core 3
Bnd-userfbrowsers iy = evter X
reqtsgset?i;nNt?eSri]na?:SIed -I-i me
Network Batching Batching for deep sleep

Key Observation#4: Modern data centers already rely on request batching heavily

Jouppi, Norman P., et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product.”" 2021 ISCA 22

https://memcached.org/blog/nvm-multidisk/

Meisner, David, and Thomas F. Wenisch. "Dreamweaver: architectural support for deep sleep.”" ASPLOS 2012



https://memcached.org/blog/nvm-multidisk/

Latency & Energy-Efficiency Tradeoff

U
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Energy efficiency

Latency & Energy-Efficiency Tradeoff

RPU can achieve better energy efficiency vs CPU at the same service latency, or can

exhibit a better service latency at the same energy efficiency S -~ SIMT
RPU -7
(000 SIMT [8-32]) ==
10s-100s of threads/core -
-7 MIMD
Y Sl Better single thread performance CPUs

Better energy efficiency

Single Thread Latency



HW /SW Stack

Webservice (C++, PHP, ...)

ARM/x86 compiler

CUDA

HTTP server

CUDA compiler

Webservice (C++, PHP, ...)

Runtime/libs
(pthread, cstdlib, ..)

Nvidia Triton HTTP server

ARM/x86 compiler

0S
(Process, VM, 1/0s)

CUDA runtime/libs
(cudalib, tensorRT, ..)

Batch-aware HTTP server

0S
(1/0s management)

Runtime/libs
(pthread, cstdlib, ..)

CUDA driver
(VM/thread management)

0S
(1/0s management)

Multi Core CPU

GPU Hardware

RPU driver
(VM/thread management)

CPU SW Stack

GPU SW Stack

RPU Hardware

RPU SW Stack

- For RPU, we keep the SW programming interface as in the CPU

- Some VM&process management system calls are reimplemented in the RPU driver to
be batch-aware
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Energy Efficiency of CPU vs RPU (Analytical Model)

CPU Energy Execution Energy + Memory system Energy + Front_0o00 Energy + Static Energy

RPU Energy  pyecution Energy + (1 —r) (Memory system Energy) + n *1eff | Front_000 Energy + r * Memory system Energy + Static Energy| + SIMT_Overhead

\ I
|

Amortized
factors = 50-90%

data locality ratio =75%

batch size (n) = 8-32 Larger L1/L2
MCUs
SIMT Efficiency=92% Active mask
etc.

- an anticipated 2-10x energy efficiency gain can be achieved with RPU vs CPU
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CPU Dynamic Energy Breakdown
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Experimental Setup

Dynamic Chip-level cycle System-level

Instrumentation accurate simulator uservice-interaction simulator

traces

. Throughput
SIMTec (w/ & w/o batching) Accel-Sim 9mp

& latency uQsim

[ISCA 2020] &
McPAT

(x86 PIN-based tool)

[ISPASS 2022] [ISPASS 2019]

} CPU vs RPU
SIMT Efficiency throughput/Watt &

latency
Workloads: Social Network Microservices

Microsuite [IISWC 2018], DeathStarBench [ASPLOS 2020] and In-house benchmarks
Libraries: c++ stdlib, Intel MKL, OpenSSL, FLANN, Pthread, zlib, protobuf, gRPC and MLPack, ...

Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020

Zhang, Yanqi, Yu Gan, and Christina Delimitrou. "ugSim: Scalable and Validated Simulation of Cloud Microservices." ISPASS 2019

Alawneh, Ahmad , et al. "A SIMT Analyzer for Multi-Threaded CPU Applications." ISPASS 2022

Sriraman, Akshitha, and Thomas F. Wenisch. "y suite: a benchmark suite for microservices." [ISWC 2018 29
Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems.“ ASPLOS 2019

Li, Sheng, et al. "McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures." MICRO 2009

End-to-end tail latency &
Max throughput



Batching Opportunity for Facebook Services

* To amortize batching overhead, you either need:

* (1) High servi
* (2) High traffi
* (3) High traffi

ce latency, with low traffic so service latency will amortize batching OR
¢, with low service latency so high traffic will amortize batching OR
c and high service latency (ideal case)

* Let’s take a look at Facebook in-production services:

pservice | Throughput (QPS) | Req. latency | Insn./query
Web O (100) O (ms) O (10%
Feed1 O (1000) O (ms) O (10”)
Feed2 0 (10) O (s) 0 (10%)
Adsl O (10) O (ms) O (10%)
Ads2 O (100) O (ms) O (107

Cachel O (100K) O (us) 0 (10%)

Cache2 O (100K) O (us) 0 (10%)

}

Low traffic but high latency

Low latency but high traffic

Note: | was not able to calculate the exact batching overhead as the exact numbers are not shown and SLA (P99 latency) is not specified.

30

Sriraman, Akshitha, Abhishek Dhanotia, and Thomas F. Wenisch. "Softsku: Optimizing server architectures for microservice diversity@ scale."ASPLOS 2019



Batching Opportunity for Google Services

* (1) From Google in-production ML inference services:
e Batching is widely used for DL inference with size = 8-20 reqs based on traffic and latency

Production MLPerf 0.7 Quoted: “Clearly,
DNN ms {batch | DNN ms DNN  ms batch datacenter applications
MLPO 7 | 200 |[RNNO 60 esnet50 15 16 .
MLP1 20| 168 [RNNIT 10 SSD 100 4 I|.m|t latency, not batch
ICNNO 10 BERTO 5 | 128 JGNMT 250 16 size. Future DSAs should
CNN1 32| 32 IBERTI 10 take advantage of larger

Table 5. Latency limit in ms and batch size picked for TPUv4i. batch sizes”

* (2) Further, Google search service has a high service latency (~¥10s ms) and high
traffic (~100K QPS), so they are a good candidate for batching

31
Jouppi, Norman P, et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA



Thank You!
Q&A?

Software
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