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Datacenter Power Breakdown

2Barroso, Luiz André, and Urs Hölzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018

Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems." ACM TACO 2016

Notes: in the TACO paper, Execution includes ALU+Reg+OoO. In the fig above, we exclude the OoO and add it to the frontend. Caches power include dynamic L1/L2/L3 cache power.. The numbers are collected with McPAT

25-45% of datacenter power is consumed in CPU’s instruction supply (frontend & OoO)

Datacenter Power Breakdown
(from Google)
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1 Application, Millions of Users

Log-in reqs

log in microservice

search reqs

search microservice

Private Datacenter

Public Datacenter

Key Observation #1: Single Program Multiple Data (SPMD) are abundant in the datacenters
3

“Similar” Request-Level Parallelism 
1000s of independent requests are all running the same code 

(“xyz”, “1234”)

(“john”, “5678”)

(“mah”, “ko56”)

(“purdue univ”)

(“arsenal fc”)

(“stock today”)

(“ma98”, “4444”)

(“elections 2024”)

Microservice ()
{

…….
…....
…….

}

Single Program
Multiple Data



Server Workloads on GPU’s
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• Key Idea: Exploit SPMD by batching requests and run them on 
GPU’s Single Instruction Multiple Thread (SIMT) or CPU’s SIMD

• Advantage: Significant energy efficiency (throughput/watts) vs 
multi-threaded CPU 

• Drawbacks: 
• (1) Hindering programmability (C++/PHP vs CUDA/OpenCL)
• (2) Limited system calls support 
• (3) High service latency (10-6000x)

• GPUs tradeoff single threaded optimizations (OoO, 
speculative execution, etc.) in favor of excessive 
multithreading

• In SIMD, relying on branch predicates & fine grain context

Recall: GPUs and SIMDs were designed to execute data parallel portion (i.e., loops) not the 
entire application

Rhythm, ASPLOS 2014 

MemcachedGPU, SoCC 2015 

ispc, InPar 2012 



“Slower but energy-efficient wimpy cores only win 
for general data center workloads if their single-

core speed is reasonably close to that of mid-range 
brawny cores”
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Urs Hölzle
Google SVP

Barroso, Luiz André, and Urs Hölzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018

Hölzle, Urs. "Brawny cores still beat wimpy cores, most of the time." IEEE MICRO 2010

Up to 2x slower latency can be tolerated by
data center providers 



Off-Chip BW Scaling
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Key Observation #2: There is available headroom to increase on-chip throughput 
(thread count) in the foreseeable future.

256 threads

512 threads



How to increase on-chip throughput of CPU?

• Direction#1 (industry standard): Add more Chiplets + Cores + SMT

• Direction#2 (this work): Move to SIMT
• More energy efficient (throughput/watts)

• Cost-effective (throughput/area)

• Better scalability

7
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“Let’s bring SIMT efficiency to the CPU world!”
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SIMT Efficiency

.......

Load A only once

CPU Multi-Core with Simultaneous Multi-Threading
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Ex
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Issue & 
Dispatch 

ReqN

CoreN
Thread2Thread1
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Schedule

Issue & 
Dispatch 

Ex
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Ex
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.......

Request Processing Unit (RPU)
SIMT+OoO Architecture

Reqs
Batch

Amortize
frontend+OoO

overhead (75%)

Reduce generated 
traffic and amortize 
cache energy (20%)



Batch-Aware 
HTTP Server

RPU HW
(Latency-

Optimized
SIMT Engine)

Batch Similar Requests
(e.g. per API)

Client Requests
(HTTP/RPC calls)

Fetch &
Decode

OoO

Execute Execute…….

Dispatch 
& Issue

Lockstep 
Execution

SIMT 
Optimizer

Branch
Pred

RPU Core

SIMR System Overview
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CPU vs GPU vs RPU

Metric CPU GPU RPU

Core model OoO In-Order OoO

Programming General-Purpose CUDA/OpenCL General-Purpose

ISA x86/ARM HSAIL/PTX x86/ARM

System Calls Support Yes No Yes

Thread grain Coarse grain Fine grain Coarse grain

Threads per core Low (1-8) Massive (2K) Moderate (8-32)

Thread model SMT SIMT SIMT

Consistency Variant Weak+NMCA* Weak+NMCA*

Interconnect Mesh/Ring Crossbar Crossbar
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The RPU takes 
advantage of the 
latency 
optimizations 
and programmability 
of the CPU 

& SIMT efficiency 
and memory model 
scalability of the 
GPU

*NMCA: non-multi copy atomicity
Ren, Xiaowei, et al. “HMG: Extending cache coherence protocols across modern hierarchical multi-GPU systems." HPCA 2020



• Control Divergence
• Challenge: Control divergence with high latency path

• Solution: Optimized batching & System-level batch split

• Memory Divergence
• Challenge: Cache/TLB contention & bank conflicts

• Solution: Batch tuning, stack/memory coalescing and 

SIMR-aware memory allocation

• Larger execution units & cache resources
• Challenge: Higher instruction execution & L1 hit latency 

• Solution: Exploit low IPC, less generated traffic and employ sub-batching interleaving

RPU’s Challenges

L1 cacheThrashing

Many 
threads

A (1111)

C (0011)B (1100)

D (1111)

System call 
(10 ms)

Reconvergence?

10 ns
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• Control Divergence
• Challenge: Control divergence with high latency path

• Solution: Optimized batching & System-level batch split

• Memory Divergence
• Challenge: Cache contention & bank conflicts

• Solution: Batch tuning, stack/memory coalescing and 

SIMR-aware memory allocation

• Larger execution units & cache resources
• Challenge: Higher instruction execution & L1 hit latency 

• Solution: Exploit low IPC, less generated traffic and employ sub-batching interleaving

RPU’s Challenges

L1 cacheThrashing

Many 
threads

A (1111)

C (0011)B (1100)

D (1111)

System call 
(10 ms)

Reconvergence?

10 ns

Read more details in the paper on how we address these challenges

13



SIMT Control Efficiency
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Notes: (1) Batch Size = 32 & #batches=75, (2) System Calls are not traced, (3) SIMT Eff =  scalar-instructions / (batch-instructions * batch-size), (4) fine-grain locking are assumed. Other 
assumptions are included in the paper.
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RPU system achieves 5.7x higher throughput/Watt while 
maintaining acceptable service latency, without 

changing the programming SW interface

1.44x
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Summary

• Request Similarity is abundant in the data center.

• We start with OoO CPU design and augment it with SIMT execution to 
maximize chip utilization and exploit the similarity. 

• We co-design the software stack to support batching and awareness 
of SIMT execution. 

17



SIMT efficiency is high in the open-source 
microservices we study. 

We are very interested in evaluating SIMT 
control efficiency in proprietary 

production microservices. 

18



Instruction level parallelism (ILP) &
Thread level parallelism (TLP)

Data level parallelism (DLP) 

Request level parallelism (RLP) 

19

RPU

Thank You!
Q&A?



Backup Slides
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SIMT-friendly Microservices

Key Observation#3: Microservices reduce the per-thread cache requirement and 
minimize control-flow variations between concurrent threads

Service ()
{

…....
if ( cond ){

…....
} 

else {
…....

}
…….

}

func1_uService()
{

…..
}

Monolithic Service

uService ()
{

if ( cond ){
func1();

}  else {
func2(); 

}
}

Microservices architecture
+Smaller cache footprint

+Less divergent 

func2_uService()
{

…..
}
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Key Observation#4: Modern data centers already rely on request batching heavily

Jouppi, Norman P., et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA
https://memcached.org/blog/nvm-multidisk/
Meisner, David, and Thomas F. Wenisch. "Dreamweaver: architectural support for deep sleep." ASPLOS 2012

From Google’s Production DL Inference

Batching Optimization

Memcached servers

DL Inference Batching Network Batching Batching for deep sleep

Power management

https://memcached.org/blog/nvm-multidisk/
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GPU
(In-Order SIMT 32)

1000s of threads/core

Intel Xeon
AMD EPYC

(OoO SMT2)

ARM ThunderX
(OoO SMT4)

Intel Atom
(In-Order SMT1)

IBM POWER 9
(OoO SMT8)

MIMD
CPUs

SIMT

High SIMT Efficiency

Low SIMT Efficiency

Latency & Energy-Efficiency Tradeoff

RPU
(OoO SIMT [8-32])

10s-100s of threads/core

CPU’s SIMD
(OoO SIMD w/o BP)

10s-100s of lanes/core



Single Thread Latency
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MIMD
CPUs

SIMT

Latency & Energy-Efficiency Tradeoff

RPU
(OoO SIMT [8-32])

10s-100s of threads/core

Better single thread performance 

Better energy efficiency

RPU can achieve better energy efficiency vs CPU at the same service latency, or can 
exhibit a better service latency at the same energy efficiency



HW/SW Stack

25

Webservice (C++, PHP,  …)

ARM/x86 compiler

HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(Process, VM, I/Os)

Multi Core CPU

CPU SW Stack

CUDA

CUDA compiler

Nvidia Triton HTTP server

CUDA runtime/libs
(cudalib, tensorRT, ..)

OS
(I/Os management)

CUDA driver 
(VM/thread management)

GPU Hardware

Webservice (C++, PHP,  …)

ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(I/Os management)

RPU driver 
(VM/thread management)

RPU Hardware

GPU SW Stack RPU SW Stack

→ For RPU, we keep the SW programming interface as in the CPU
→ Some VM&process management system calls are reimplemented in the RPU driver to 

be batch-aware



RPU HW
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Energy Efficiency of CPU vs RPU (Analytical Model)
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𝑪𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚

𝑹𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚
=

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 +𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝟏 − 𝒓 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 +
𝟏

𝒏 ∗ 𝒆𝒇𝒇
𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝒓 ∗ 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝑰𝑴𝑻_𝑶𝒗𝒆𝒓𝒉𝒆𝒂𝒅

SIMT Efficiency=92%

batch size (n) = 8-32
data locality ratio =75%

Amortized
factors = 50-90%

→ an anticipated 2-10x energy efficiency gain can be achieved with RPU vs CPU

Larger L1/L2
MCUs

Active mask
etc.



CPU Dynamic Energy Breakdown
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Experimental Setup
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Workloads: Social Network Microservices
Microsuite [IISWC 2018], DeathStarBench [ASPLOS 2020] and In-house benchmarks
Libraries: c++ stdlib, Intel MKL, OpenSSL, FLANN, Pthread, zlib, protobuf, gRPC and MLPack, …

SIMTec
(x86 PIN-based tool)

[ISPASS 2022]

Accel-Sim
[ISCA 2020] & 

McPAT

uQsim
[ISPASS 2019]

SIMT Efficiency

Chip-level cycle 
accurate simulator

System-level 
uservice-interaction simulator

CPU vs RPU
throughput/Watt & 

latency

traces 
(w/ & w/o batching)

Dynamic
Instrumentation

End-to-end tail latency &
Max throughput

Throughput
& latency

Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020

Zhang, Yanqi, Yu Gan, and Christina Delimitrou. "uqSim: Scalable and Validated Simulation of Cloud Microservices." ISPASS 2019

Alawneh, Ahmad , et al. "A SIMT Analyzer for Multi-Threaded CPU Applications." ISPASS 2022

Sriraman, Akshitha, and Thomas F. Wenisch. "μ suite: a benchmark suite for microservices." IISWC 2018

Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems.“ ASPLOS 2019

Li, Sheng, et al. "McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures." MICRO 2009



Batching Opportunity for Facebook Services

• To amortize batching overhead, you either need:
• (1) High service latency, with low traffic so service latency will amortize batching OR

• (2) High traffic, with low service latency so high traffic will amortize batching OR

• (3) High traffic and high service latency (ideal case)

• Let’s take a look at Facebook in-production services:

30

Note: I was not able to calculate the exact batching overhead as the exact numbers are not shown and SLA (P99 latency) is not specified. 

Low traffic but high latency

Low latency but high traffic 

Sriraman, Akshitha, Abhishek Dhanotia, and Thomas F. Wenisch. "Softsku: Optimizing server architectures for microservice diversity@ scale.“ASPLOS 2019



Batching Opportunity for Google Services

• (1) From Google in-production ML inference services:
• Batching is widely used for DL inference with size = 8-20 reqs based on traffic and latency 

• (2) Further, Google search service has a high service latency (~10s ms) and high 
traffic (~100K QPS), so they are a good candidate for batching 

31
Jouppi, Norman P., et al. "Ten Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product." 2021 ISCA

Quoted: “Clearly, 
datacenter applications 
limit latency, not batch 
size. Future DSAs should 
take advantage of larger 
batch sizes”
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TPU VCU

Hardware

Software

Deep 
Learning Microservices

Accelerators

RPU

Thank You!
Q&A?


