27

PURDUE

Scalable and Energy-Efficient SIMT

Systems for Deep Learning and Data
Center Microservices

Mahmoud Khairy

PhD Candidate — Final Examination

abdallm@purdue.edu
https://mkhairy.github.io/

6/1/2022

mailto:abdallm@purdue.edu
https://mkhairy.github.io/

Agenda

* Motivation and Thesis Summery (5 mins)
* LADM: Transparent Multi-GPU Scaling (7 mins)
* Accel-Sim: An Extensible GPU simulation framework (5 mins)

* RPU: A SIMT System for Data Center Microservices (25 mins)

* Overview & Key Observations
* RPU Hardware & Software Stack
* Experimental Setup & Results

* Conclusions & Future Work (3 mins)
* Q&A (15+ mins)

Growth of Hyperscale Data Centers

* The growth of hyperscale data
centers has steadily increased in
the last decade

* The next era of loT and Al

* Challenges:
* Slowing growth of Moore’s law
* High power consumption
* Large carbon footprint

* By 2030, the data centers will 0

gonsurrzje 10% of the total electricity 12 13 13 14 14 15 15 16 16 17 17 16 18 16 16 20 20
eman

— Growth of Hyperscale Data Centers

Number of Data Centers (Worldwide)

https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

Datacenter Power Breakdown

COOLING OVERHEAD
3.0%

POWER OVERHEAD
7.0%

MISC
4.0%

NETWORKING
5.0%

STORAGE
0% \

DREAM
18.0%

Reg &
Execute (24%)

Datacenter Power Breakdown CPU Power Breakdown
(Intel Skylake)

(from Google)

CPUs
61.0%

30% of datacenter power is consumed in CPU’s instruction supply (frontend & 000)

[1] Barroso, Luiz André, and Urs Hoélzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018
[2] Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems.”" ACM TACO 2016
[3] Powell, Michael D., et al. "CAMP: A technique to estimate per-structure power at run-time using a few simple parameters." HPCA 2009

Datacenter Paradigm Shifts (HW-SW Codesign)

Software

Hardware

T

(C)
|
(Cy
&=

=)
-

=
=)

TPU VCU

Accelerators

Datacenter Paradigm Shifts (HW-SW Codesign)

. mongoDB.
8

Software .. | e
. ARCHITECTURE
eeeeeeeeeeeeeeee
Input layer Multiple hidden layers Output layer M
MICROSERVICE ‘ MICROSERVICE MICROSERVICE
NG =4 J | |
N BUSINESS
P :
(XX |
A
/

LOGIC MICROSERVICE | | MICROSERVICE MICROSERVICE ‘ ’_‘
1 1 gRPC
ICROSERVICE

DATA
LAYER

\\\ / \\
WA
\ SN
A\

© | EEE

Learning

Hardware

PP
sddd

C -
| [
] -
(| LD

TPU VCU

Accelerators :

My Ph.D. Thesis Contributions

Energy-Efficient uService Processing
- RPU [under review]

MOMNOLITHIC
ARCHITECTURE

Software

eeeeeeeeeeeeeeeee

Multiple hidden layers

l l

MICROSERVICE MICROSERVICE MICROSERVICE

l l l

BUSINESS

Efficient Multi-GPU \/\}} LOGIC Mlcnasenwci MICROSERVICE Tcnasenwu
9 LADM [MICRO’ZOJ OZ 8 IPA&(TE‘: ‘ | MICROSERVICE ‘—r MICROSERVICE H
9 [SigArCh 121] HICROSERVICi :ucnosmw::E ‘
Learning @ @ Microservices
Hardware
adid

C | =
Cy -
C | =

== =

TPU

Accurate and Extensible Simulator Accelerators
- Accel-Sim [ISCA’20] [SIGMETRICS’18]

Thesis Statement (Verbatim)

* SIMT-based accelerators, like GPUs and my proposed RPUs, are
promising solutions to achieve significant enerqgy efficiency while still
preserving programmability in the twilight of Moore’s Law.

* | propose three approaches to build next-generation scalable and
energy-efficient SIMT systems:

(1) Detect and optimize for each type of locality exist in the DL and HPC
workloads to overcome NUMA effects,

(2) Exploit microservices execution similarity and eliminate redundancy to
improve data center energy efficiency, and

(3) Build extensible and validated SIMT simulation tools to keep-up with
industrial changes.

My Ph.D. Thesis Contributions

SOftware MONOLITHIC . mongODB
. Dee:: :\:uhr:jl :lf;\:\:ork ARCHITECTURE l l l M
OS\:\‘”) “ MICROSERVICE ‘ MICROSERVICE MICROSERVICE m
\\;\{ MICRG:ERVICE MICROSERV];CE M:RDEERVICE ‘ ’_‘
Efficient Multi-GPU | O 1 1 gRPC
9 LADM [MICRO’ZO] O/f O ‘ | MICROSERVICE ‘—; MICROSERVICE H
9 [SigArCh’21] HICROSERVICE'L :IICROSEFWICE ‘
Learning @ @ Microservices
Hardware
@ Q@ @
dddd

C | =
Cy -
C | =

== =

TPU

Accurate and Extensible Simulator
- Accel-Sim [ISCA’20] [SIGMETRICS’18]

VCU

Accelerators

Single Instruction Multiple Thread (SIMT)

* GPGPU Programming Model GPU Hardware:
* Single Program Multiple Data * Aggregate every 32/64 threads in a warp
e Express parallelism in terms of fine-

Y

; — Wik Htam Ga s thresd) * SIMT = One Instruction, Multiple Threads
SIMT Instruction
stack Fetch Lock-step
3 3; 1 Work group (collection of threads) - execution
Instruction
: g Decoder
.
;; 3 3? ; — s Grid (collection of work groups) Ex Ex
333333 LaneO | T Lane N

10

GPU Pertormance Scalability is at Risk

+Scalable GPGPU Workloads

?? Low Yield

Volta GPU -
7-3nm :
21B Tr @12nm @ Very Expensive

|

Pascal GPU
15B Tr @16nm

Maxwell GPU
8B Tr @28nm

|

Normalized Performance
O = N W H U1 O NN 00

30 60 90 120 150 180 210
Number of Streaming Multiprocessors (SMs)

240

Scaling all the GPU resources: Increasing SMs, memory bandwidth and interconnection bandwidth.

Hierarchical Multi-GPU Multi-Chiplet

Single Logical GPU

>— 7

Controller chip
(Kernel/TB Scheduler, ..)

N Y
GPU | -..... GPU
" S e
! {
[Switch
i N I

[Hchﬁ.‘;‘.LJ

h\

o

GPU
Chiplet

I

[Inter-ChipIet Connection Network]

1

[HBM GPU
Chiplet

]

I

(]

Silicon Interposer or Package SubstratJ

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020

Hierarchical Multi-GPU Multi-Chiplet

Single Logical GPU

Non-Uniform Memory Access (NUMA)

- Decreased Performance and Energy Efficiency

-

r

GPU
__/

I

|

GPU

"

GPU

o J
\ Board Connection

/

Controller chip \
(Kernel/TB Scheduler, ..)

GPU GPU]
..... HBM _
* !

[Inter-Chiplet Connection Network]

1 I

[HBM G_PU [HBM] GPU
Chiplet Chiplet

Silicon Interposer or Package SubstratJ

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020

Hierarchical Multi-GPU Multi-Chiplet

Non-Uniform Memory Access (NUMA)
- Decreased Performance and Energy Efficiency

Single Logical GPU
ﬂ ~ - Controller chip \
GPU | . GPU l_[(l(ernel/TB Scheduler, ..)]_l
S [iann R ...

[Transparently overcoming these NUMA effects will be a
I challenging problem for GPUs over the next decade.

GPU GPU
HBM GPU _____ [HBM] GPU
Q J — y Chiplet Chipley

Board Connection

Silicon Interposer or Package Substrate

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017 14
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020

NUMA-GPU is already out there

Socket-based Multi-GPU:

jivioos g Bt onu il

i i A
Nvidia DGX server AMD GPU server Intel Xe GPU server
Nvlink (4-16 GPUs) Infinity link (4-8 GPUs) Xe link (6 GPUs)

Xe Link
10 Tile
TSMC 7nnm

|

;,=,'_|;1;l:Lumzl:[.u;l:;;:ﬁm%%a_?@g}e:[:I:u::xz

]
| =
T
'

[OTile |
: | TSMC 7nnm

Nvidia Ampere (2 virtual GPU clusters) AMD Instinct MI200 Intel Ponte Vecchio (8 tiles per GPU) Apple M1 Ultra

NUMA Impact

Monolithic GPU Chip
(256 SMs + 2.8 TB/sec BW)

4 GPUs with each of
(64 SMs + 700 GB/sec BW)

- Performance Loss

16

NUMA Impact:

Monolithic GPU Chip
(256 SMs + 2.8 TB/sec BW)

4 GPUs with each of
(64 SMs + 700 GB/sec BW)

Performance Loss

B Round-Robin-Sched + FG Data Interleaving

Monolithic Ideal Performance

1
0.8
0.6
0.4

: m B B l I

0.2

Normalized Perf.

Switch
360

Switch
180

Topology Switch

Link BW 90
(GB/sec)

Ring
1400

Ring
2800

17

NUMA Impact:

Monolithic GPU Chip
(256 SMs + 2.8 TB/sec BW)

4 GPUs with each of
(64 SMs + 700 GB/sec BW)

Performance Loss

B Round-Robin-Sched + FG Data Interleaving

Monolithic Ideal Performance

0.8
0.6

B l
0.2
: 'om I

Topology |Switch Switch Switch Ring

Link BW 180 360 1400
(GB/sec)

Normalized Perf.

Cost Effective Very Expensive

18

NUMA Impact: Performance Loss

B Round-Robin-Sched + FG Data Interleaving

Monolithic GPU Chip e
(256 SMs + 2.8 TB/sec BW) 1 onolithic ldeal Performance

0.8
0.6

ldeally, we would like to achieve the same monolithic chip

performance with the cheapest possible interconnection (Perf/S)
A

m Topology |Switch Switch Switch Ring Ring
(64 SMs + 700 GB/sec BW) (GB/sec) Cost Effective Very Expensive

ed Perf.

19

NUMA Impact: Decreased Energy Efficiency
(Perf/Watt)

. 22 -
* Energy cost per task could double =
5 1g
* 50% of the future GPU power is %}5 1.6 ,
anticipated to be consumed on S 14 X
off-chiplet traffic g 12
§ T T T T T T T e
¢ ea
“ 08
2 4 8 16 32

Number of Chiplets

Arunkumar, et al. "Understanding the future of energy efficiency in multi-module gpus." HPCA 2019 50

Traditional NUMA Solutions

HBM <« GPUO0 &— GPUl <> HBM [DRAM}—{ CPUO [CPUl }H[DRAM}

HBM <+ GPU2 GPU3 <> HBM {DRAM}—{ CPU2 CPU3 }—{DRAM}

Reactive Solutions:
First-touch page placement
Page migration/duplication

Work redistribution

Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA'16
Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18

Traditional NUMA Solutions

HBM <« GPUO0 &— GPUl <> HBM [DRAMH CPUO {CPUI }H{DRAM]

HBM <> GPU2 GPU3 <> HBM {DRAM}—{ CPU2 CPU3 HDRAM}

Reactive Solutions:
First-touch page placement = PCle bottleneck, No Context Switching support

Page migration/duplication ™ Limited GPU Memory capacity
Work redistribution = Massive threads’ context

Substantial
Overhead

Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA'16
Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18

Traditional NUMA Solutions

o o < o

E HBM } o Ke Observation #1: NUMA-GPU favors a proactive solution
based on static program analysis

Reactive Solutions:

First-touch page placement = PCle bottleneck, No Context Switching support

Substantial . _ SIS e |
Overhead Page migration/duplication ™ Limited GPU Memory capacity
Work redistribution = Massive threads’ context
Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA'16 23

Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18

gridDim.y

blockDim.y

o blockDim.x
gridDim.x > >
T1 T2
TB1 TB2 TB3 TB4
\ T3 T4
TB5 | TB6 | TB7 | TBS : —
(tid.x, tid.y)
TB9 TB10 | TB11 | TB12
TB13 | TB14 | TB15 | TB16
(bid.x, bid.y)

GPU hierarchical fine-grain threads

+ Scheduling at thread-block level

+ Expressive Thread IDs

+ Low work/spatial locality per thread

/

GPU vs CPU Programming Model

Spatial locality
>

CPU Thread 1

CPU Thread 2

CPU Thread 3

CPU Thread 4

CPU flat coarse-grain threads

GPU vs CPU Programming Model

o blockDim.x
gridDim.x . . o Spatial locality
£ :
T1 T2 a
TB1 TB2 TB3 TB4 % CPU Thread 1
>.. - - -—r el o] - \ T3 T4 v % DIl Thuaad M
£
S Key Observation #2: NUMA-GPU should consider the
o] o) . . .
I hierarchy and massive threads of GPU programming model
(Bid.x, bid.y)
GPU hierarchical fine-grain threads CPU flat coarse-grain threads
~ N

+ Scheduling at thread-block level
+ Expressive Thread IDs
+ Low work/spatial locality per thread

/

Locality-Aware Data Management (LADM)

Compiler Runtime Hardware

Source CUDA file

executable

[

Locality (BDImI GDIm) LASP Node 1
Table

Node N

Driver

void main() { Compiler Node 0

mallocMan(A);
Index
Analysis

mallocMan(B);

kernel launch command

klaunch(B, A);

Runtime
Configuration

}

Static Index Analysis (LASP)

[Threadblock-Centric } [Locality-Aware Scheduling and Placement }

LADM [MICRO’20]

* Key Idea: LADM exploits a threadblock-centric index analysis to
optimize runtime threadblock scheduling, data placement and
cache policy.

* Key Results: LADM decreases inter-GPU memory traffic by 4x and
comes within 83% of ideal monolithic performance while using
limited and cheap interconnect technology.

More details can be found in the thesis & our MICRO’20 paper

Architecture Simulators

* Simulation is commonly used to estimate the effectiveness of a
new architectural design idea.

* The simulation tools used by industry are often not released for
open use.

Academic Industrial Designs/

Simulators Simulators

Incorrect baseline assumptions
—> unrealistic issues or incorrect conclusions @

28

Architecture Simulators

* Simulation is commonly used to estimate the effectiveness of a
new architectural design idea.

p
Research cannot look ahead, if its baseline

assumptions are too far behind

e The simulati d for

open use.

Academic Industrial Designs/

Simulators Simulators

Incorrect baseline assumptions
—> unrealistic issues or incorrect conclusions @

29

GPU Accelerators are Evolving Rapidly

\ Pascal . .
Kepler « mISA sm60 Turing
* miSA sm30 * Unified memory * mISA sm75
* DPunit e HBM * New tensor cores Hopper
* Dynamic Parallelism * FP16 support * RT-cores 9
* Dualissue « Streaming I1 cache * UDP cores "
2009 2011 l 2013 2015 l 2017 12019 2022 l
rerms !‘ Maxwell Volta Ampere
t miSAsm20 + mISA sm50 + mISA sm70 + mISA sm80
* Caches/Atomics o
e Subcore model Scoped synchronization e Sparse tensor cores

 Dual warp scheduler

 Tensor cores & INT unit * Asynchronous copy
 Independent threads SIMT and barriers
 Cooperative Groups « HBM2

 Unified adaptive cache

New machine ISA and architecture designs every 1-2 years!

30
We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.

GPU Accelerators are Evolving Rapidly

Pascal ,

Kepler « mISA sm60 Turing
mISA sm30 * Unified memory * mISA sm75
DP unit e HBM * New tensor cores Hopper
Dynamic Parallelism * FP16 support * RT-cores 5
Niial iccna [ARG JP I R R e LIDP cores *°

2009 201 How cah acadgmlc or.)en-sou.rce simulators keep up o 202 l
‘ with industrial designs quickly and accurately? 1
- o annl
ISAFerz?' - Maxwell Volta Ampere
misa sm mISA sm50 mISA sm70 « mISA sm80

Caches/Atomics

Dual warp scheduler Subcore model

New machine ISA and architecture designs every 1-2 years!

Scoped synchronization
Tensor cores & INT unit
Independent threads SIMT
Cooperative Groups
Unified adaptive cache

We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.

e Sparse tensor cores
* Asynchronous copy

and barriers

* HBM2

Accel-Sim [ISCA’20]

* Accel-Sim introduces a simulation framework to help solve the problem of
keeping simulators up-to-date with contemporary designs.

Correlation
mIiSA Guidance

Accel-Sim |traces | Trace-Driven Extensible Accel-Sim
Tracer Frontend Perf Model Correlator

I S:muiat:on

- stats
Accel-Sim Con ig
Tuner Files Hardware stats

Accel-Sim uBench suite

* Key Results: Modeling and validating against five generations of NVIDIA GPUs
ranging from Kepler to Ampere with correlation > 0.97 in all instances.

32

Accel-Sim Popularity/Impact

GPU simulator usage

Of=A0
PR

Elt... :

Hcitations
=
ONDOOON
-
]
]
P4 o

]]]
. . . N > SN W S &N
https://accel-sim.github.io/ & & ¥ ¢ K & &
9 Y V$ <
v Q N
o >
S

GPU simulator usage in the top architecture conferences
(MICRO, ISCA, HPCA, ASPLOS) since June 2019

* The most widely used GPU simulator by the research community since its release
 Usage beyond academia: Sandia National Labs, LLNL, some industrial companies &
startups (e.g. Rivos startup among others)

https://accel-sim.github.io/

My Ph.D. Thesis Contributions

Efficient uService Processing
- RPU [under review]

eeeeeeeeeeeeeeeee

Software
ARCHITECTURE
Input layer Output layer l l

MICROSERVICE MICROSERVICE MICROSERVICE

l l l

BUSINESS
LOGIC MICROSERVICE MICROSERVICE MICROSERVICE

l l
DATA MICROSERVICE ‘ —— | MICROSERVICE ‘
LAYER

MICROSERVICE MICROSERVICE ‘

L 4

Learning @ @ Microservices

Hardware

NENENEN
sddd
(Cy =)

Cy | [
(C [D]

== B

TPU

Accelerators ”

Request Processing Unit (RPU): Single Instruction
Multiple Request Processing for Energy-Efficient
Data Center Microservices

lunder review at a top tier conference]

Mahmoud Khairy, Ahmad Alawneh, Aaron Barnes, and Timothy G. Rogers
Purdue University

7.0%

MISC
4.0%

NETWORKING
5.

0%
STORAGE
2.0%

Reg &
Execute (24%)

Recall: Datacenter Power Breakdown

COOLING OVERHEAD
CPU Power Breakdown

i?\:ﬂEH OVERHEAD
Datacenter Power Breakdown
Intel Skylake
(from Google) (ylake)

CPUs
61.0%

DREAM
18.0%

30% of datacenter power is consumed in CPU’s instruction supply (frontend & 000)

[1] Barroso, Luiz André, and Urs Hoélzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018 36
[2] Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems.”" ACM TACO 2016
[3] Powell, Michael D., et al. "CAMP: A technique to estimate per-structure power at run-time using a few simple parameters." HPCA 2009

1 Application, Million of Users

“Similar” Request-Level Parallelism
Go gle 1000s of independent requests are all running the same code

Log-in reqs

facebook

log in microservice

Private Datacenter

Uber
search reqgs

search microservice

ETELILX

Public Datacenter

—

Key Observation#1: Single Program Multiple Data (SPMD) are abundant in the
cloud, either in private or public datacenters 37

Server Workloads on GPU’s SIMT

Rhythm: Harnessing Data Parallel
Hardware for Server Workloads
MemcachedGPU: Scaling-up Scale-out Key-value Stores

Sandeep R Agrawal Valentin Pistol Jun Pang
Tayler H. Hetherington Mike O’Connor Tor M. Aamodt Duke University Duke University Duke University
The University of British Columbia NVIDIA & UT-Austin The University of British Columbia sandeep@cs.duke.edu pistol@cs.duke.edu pangjun@cs.duke.edu
taylerh@ece.ubc.ca moconnor@nvidia.com aamodt@ece.ubc.ca
John Tran David Tarjan * Alvin R Lebeck
NVIDIA NVIDIA Duke University
johntran@nvidia.com alvy@cs.duke.edu

Memcached on GPU [SoCC’2015]
SPEC-web on GPU [ASPLOS’2014]
 Key Idea: batch requests and run on GPU’s SIMT
* Advantages: Significant Energy Efficiency (throughput/watts) vs CPU
 Drawbacks:
* (1) Hindering Programmability (C++/PHP vs CUDA)
e (2) Limited System Calls Support (CPU-GPU communication)
e (3) High service latency
* |In Rhythm [ASPLOS’14], GPU TITANX reports 6000X slower latency than CPU
* |n MemcachedGPU [SoCC’15], GPU was 10X slower than CPU 38

“Slower but energy-efficient wimpy cores only win
for general data center workloads if their single-
core speed is reasonably close to that of mid-range
brawny cores”

Urs Holzle
Google SVP

HOlzle, Urs. "Brawny cores still beat wimpy cores, most of the time." IEEE MICRO 2010

Off-Chip BW Scaling

——o—Memory-BW-per-Socket
——o—Thread-Count-per-Socket
Bandwidth-per-Thread (~2 GB/sec/thread)

1200
DDR6 600
HBM
1000 ’ »
/% 500
/ 4
o 800 S
@ 5~ 400 .
(aa] : .
= DDR5-7200 ¥ 4 =
% 600 ”‘:’/ %
g N 300 g
2 .- £
€ R4 <
2 400 o
= DDR5-4800 - 7, 500
2 /
4
/
Y 4
209 PR32 Intel Rappid 100
DDR3-1600 —0— e ARM
AMD EPYC
Intel Skylake Intel Copper
° 0

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Key Observation #2: There is available headroom to increase on-chip throughput

(thread count) in the foreseeable future.

40

How to increase on-chip throughput of CPU?

* Direction#1 (industry standard): Add more Chiplets + Cores + SMT x

* Direction#2 (this work): Move to SIMT J

* More energy efficient (throughput/watts)
» Cost-effective (throughput/area)
* Better scalability

“Let’s Bring the SIMT efficiency to the CPU world!”

SIMT Efficiency

CPU Multi-Core with Simultaneous Multi-Threading RPU’s SIMT Architecture

Corel
Threadl Thread2

Amortize
frontend overhead

Improving locality &\

Reducing generated
traffic y

Load A Load A Load A Load A only once

RPU Overview

Batch-Aware
HTTP Server

Client Requests
(HTTP/RPC calls)

Batch Similar Requests
(e.qg. per API)

ﬁckstep
Execution

SIMT
stack

RPU HW
(Latency-
Optimized

SIMT Engine) {ecute

IR

Fetch & Branch
Decode Pred

000

Dispatch
& Issue

Executf////

RPU Core

CPU vs GPU vs RPU

Metric GPU

Core model 000 In-Order 000

Freq High Moderate High
Programming General-Purpose CUDA/OpenCL General-Purpose
ISA x86/ARM HSAIL/PTX x86/ARM
System Calls Support Yes No Yes
Thread grain Coarse grain Fine grain Coarse grain
TLP per core Low (1-8) Massive (2K) Moderate (8-32)

Thread model SMT SIMT SIMT

Consistency Variant Weak+NMCA* Weak+NMCA*

Coherence Complex Relaxed Simple Relaxed Simple

Interconnect Mesh/Ring Crossbar Crossbar

*NMCA: non-multi copy atomicity
Ren, Xiaowei, et al. “HMG: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020
Hechtman, Blake A., et al. "QuickRelease: A throughput-oriented approach to release consistency on GPUs." HPCA 2014

The RPU takes
advantage of the
latency
optimizations

and programmability
of the CPU

& SIMT efficiency
and memory model

scalability of the
GPU

45

RPU Executive Summary

* Request Similarity is abundant in the data center.

* We start with OoO CPU design and then turns it to SIMT execution to
maximize chip utilization and exploit the similarity.

* We co-design the software stack to support batching and awareness
of SIMT execution.

46

Deep Dive into RPU’s Challenges

* Control Divergence

A (1111)

System call
10 ns B:RERLD)! C (0011) (10 ms)

D (1111)

* Control divergence wit high latency branch

Reconvergence?

* Memory Divergence

e Cache Contention & Bank Conflicts . 3 L1 cache

Many threads

* Higher instruction execution & L1 hit latency

* Due to larger execution units & cache resources at the backend

47

HW /SW Stack

Webservice (C++, PHP, ...)

ARM/x86 compiler

CUDA

HTTP server

CUDA compiler

Webservice (C++, PHP, ...)

Runtime/libs
(pthread, cstdlib, ..)

Nvidia Triton HTTP server

ARM/x86 compiler

0S
(Process, VM, 1/0s)

CUDA runtime/libs
(cudalib, tensorRT, ..)

Batch-aware HTTP server

0S
(1/0s management)

Runtime/libs
(pthread, cstdlib, ..)

CUDA driver
(VM/thread management)

0S
(1/0s management)

Multi Core CPU

GPU Hardware

RPU driver
(VM/thread management)

CPU SW Stack

GPU SW Stack

RPU Hardware

RPU SW Stack

- For RPU, we keep the SW programming interface as in the CPU
- RPU is binary backward compatible with CPU webservices.

- Some VM&process management system calls are reimplemented in the RPU driver to

be batch-aware

HW /SW Stack

Webservice (C++, PHP, ...)

ARM/x86 compiler

CUDA

HTTP server

CUDA compiler

Runtime/libs
(pthread, cstdlib, ..)

Nvidia Triton HTTP server

0S
(Process, VM, 1/0s)

CUDA runtime/libs
(cudalib, tensorRT, ..)

0S
(1/0s management)

CUDA driver
(VM/thread management)

Multi Core CPU

GPU Hardware

CPU SW Stack

GPU SW Stack

Webservice (C++, PHP, ...)
ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

0S
(1/0s management)

RPU driver
(VM/thread management)

RPU Hardware

RPU SW Stack

- For RPU, we keep the SW programming interface as in the CPU
- RPU is binary backward compatible with CPU webservices.

- Some VM&process management system calls are reimplemented in the RPU driver to

be batch-aware

SIMT Control Efficiency

— 100
£ %
0

?>:)~ 20 65%
o 60
S 20
5 30
£ 20
= I 11
7 10 i

O Q O T =d o

E ¢ E £ 5 2L § 8 3

S ¥ E & @ & 7

S 9 3 % =B %

E E @ E @

Memcached TextSearchHDImageSearch Post User Average

Microservices

Notes: (1) Batch Size = 32, (2) System Calls are not included, (3) SIMT Eff = scalar-instructions / (batch-instructions * batch-
size), (4) fine-grain locking are assumed

SIMT Efficiency (%)

SIMT Control Efficiency (Optimized)

B Naive M per-API

M per-APIl + per-Argument-Size

100 0
90 92%
30 779
70 5%
60
50
40
30
20
1 | 4
0
O = o 2 o 2 @ = B8 & T
s 5 t 2 5 2 5 &8 8§ 5 3 & § =&
O O = Q 7 Q 7 ot o Q
% © O q_l o q_l o .E g
s - 2 8 2 38 > 3
Memcached TextSearch HDImageSearch Post User Average

Microservices

System-Level RPU Batching

Frontend Logic Caching & Storage
| — |
T — McRouter -
— ARV —— : Memcached
Requests | ' UniquelD | User
— UserTag Storage
—

— Post e McRouter

|

|

|

|

Web Server |
] URLShorten

ImageSearch :

|

|

Memcached

Post
Storage

"
Recommender
REST/RPC calls Shardl (gg m

(via Network) Shardl @8 Shardn | McRouter
TextSearch

Memcached

torage

Shardl ¥ Shardn SocialGraph

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)
-> Instead of batching individual microservices, we propose batching in all microservices in the graph

HW /SW Stack

Webservice (C++, PHP, ...)

ARM/x86 compiler

CUDA

HTTP server

CUDA compiler

Webservice (C++, PHP, ...)

Runtime/libs
(pthread, cstdlib, ..)

Nvidia Triton HTTP server

ARM/x86 compiler

0S
(Process, VM, 1/0s)

CUDA runtime/libs
(cudalib, tensorRT, ..)

Batch-aware HTTP server

0S
(1/0s management)

Runtime/libs
(pthread, cstdlib, ..)

CUDA driver
(VM/thread management)

Multi Core CPU

GPU Hardware

0S
1/0s management

RPU driver

(VM/thread management)

CPU SW Stack

GPU SW Stack

RPU Hardware

RPU SW Stack

RPU HW

SIMT
Stack

Active
Mask

Reg
File

MCU

vvvvvvvvvvvvvvvvv

Batch \
Scheduler
Fetch & Branch
Decode Pred
OoO Majority
Schedule Voting
SIMD
» Reg |
ALUs SIMDs
TLBs 12$

RPU
Core

M

Atomics

ar] .

54

Control Divergence Handling

1.// BBA Basic Block "A"
2. 1f (x> 0)

3. {

4. [/ BBB

5.}

6. else

7. {

8. [//BBC

9. }

10.//BBD

Divergent code example

B (1100)

A (1111)

D (1111)

C (0011)

Reconvergence

Control Flow with Active Mask

Serialize divergent paths

PC RPC Active
Mask
D 1111
C D 0011
B D 1100

HW SIMT stack after line#2

System-Level Batch Splitting

. Procedure get_user(int userid) Memcached
/* first try the cache */
data = memcached_fetch("userrow:" + userid) —
if not data /* SIMT Divergence*/

/* not found : request database */ D— Storage

data = db_select("SELECT * FROM users I _
s i Wait
WHERE userid = ?", userid) Split

7. /* then store in cache until next get */

Microsecond latency

——

o v s wN R

Millisecond latency

8. memcached_add("userrow:" + userid, data) A (1111)

9. end /* SIMT Reconvergence Point*/
10. return data

Storage access

B (0001) (10 ms)

D (1111) Reconvergence?

Control Flow with Active Mask o

Deep Dive into RPU’s Challenges

. A (1111)
* Control Divergence
C (0011) System call

(10 ms)

* Control divergence wit high latency branch

D (1111) Reconvergence?

* Memory Divergence

e Cache Contention & Bank Conflicts . 3 L1 cache

Many threads

* Higher instruction execution & L1 hit latency

e More execution units & cache resources at the backend

57

Memory Coalescing Optimizations

Virtual space Physical space
n Ml N
T1 Stack Batch Stack - q ?
Lnt x | T1(x) Load A
Hardware d A
Int y T2(x) Load A Loa v
T2 Stack TLSBu.f,zortan Load A
Atx] |——oPPle | Tn(x) Independent threads execution (CPU)
It y i)
s 0 ;e
T1 T2 T3
[Int x| Tn(y)
Int y \
Code Seg Code Seg Load A only once
Data Seg Data Seg L % A and broadcast
0a
Heap Seg Heap Seg SIMT execution with MCU

HW memory coalescing unit (MCU) for

Stack segment coalescing with data interleaving Heap & Data segments s

Traffic Reduction

1 N\ CPU Traffic
0.9 cache contention
0:8 & bank conflicts
s 0.7
§ 0.6
. 0.5
< 03
H °
- 0.2 I I
0.1 I l
0 B H B B m B §
g e = g 2 & T % - £ o TR 00
s § § £ & £ = 8§ & S 3 £ & =
- O & @ ml Q ml Iz o @
O o = - o 4= oc c S
> < 2 o 2 o D -
£ - = —
Memcached TextSearch HDImageSearch Post User Average

- 4x traffic reduction compared to CPU

Batch Size Tuning to Alleviate Cache Contention

-HDSearch-leaf ~—HDSearch-midtier ~TextSearch-leaf TextSearch-midtier —-—McRouter
-—Memcached-backend —-Memcached-memc -post -text -—URLshort
--uniquelD —--userTag —--user
250
200
X 150
=
— 100
50
0 = = = : " —
#Threads CPU(SMT1) RPU(B32) RPU(B16) RPU(BS) RPU(B4)

L1/Thread 64KB 8KB 16KB 32KB 64KB

Batch Size Tuning to Alleviate Cache Contention

-HDSearch-leaf ~—HDSearch-midtier TextSearch-leaf TextSearch-midtier —-—McRouter
-—Memcached-backend —-Memcached-memc -post -text -—URLshort
--uniquelD —--userTag —--user

250
X N

200 For all microservices, we run at full batch size (32),
— except Text-Leaf & ImageSearch-Leaf (batch size = 8)
E 150 < 4
=
= 100 what about bank conflicts? }
50
; _ = = = =
#Threads CPU(SMT1) RPU(B32) RPU(B16) RPU(BS8) RPU(B4)

L1/Thread 64KB 8KB 16KB 32KB 64KB

SIMT-Agnostic Memory Allocator

Assume data are interleaved every 32B

1. Microservice ()

2. //Create a private temporary array in the ~ t€mp array address

3. // heap segment T0 T3 T1 T2

4. int* temp = new int[n]; Oxf6746000 0x78f47000 Ox80764040 0x78f47040

> PR

6. for(inti=0; i<n; i++) L1 cache

7. templi]l=i; //Write to the temp banks E
8.

----------- Severe Bank Conflicts

9. for(int i=0; i<n; i++)
10. sum +=templil; //Read from the temp C++ SIMT-Agnostic Memory Allocator
11.

62

SIMT-Aware Memory Allocator

Assume data are interleaved every 32B

1. Microservice ()
;. //Cl;reate a private temporary array in the To 1 2 13
- // heap segment 0xf6746000 0x78f47020 0x80764040 0x78f47060
4. int* temp = new int[n];
> PR
6. for(inti=0; i<n; i++) L1 cache
7. templi]l=i; //Write to the temp banks
8. e Conﬂict_free

9. for(int i=0; i<n; i++)

10. sum +=templil; //Read from the temp
11. -» ensures start_address%(n*tid) =0

C++ SIMT-Aware Memory Allocator

63

Fvaluation

* Analytical Model

 Simulation-based evaluation

* Chip-level evaluation
e System-level evaluation

Energy Efficiency of CPU vs RPU (Analytical Model)

CPU Energy Execution Energy + Memory system Energy + Front_0o0 Energy + Static Energy

RPU Energy Execution Energy + (1 —r) (Memory system Energy) + - *1eff | Front_000 Energy + r x Memory system Energy + Static Energy]|

\ }

! Amortized
factors = 50-80%

batch size (n) = 8-32 data locality ratio =75%
SIMT Efficiency=92%

- an anticipated 2-5x energy efficiency gain can be achieved with RPU vs CPU

Experimental Setup

Dynamic Chip-level cycle System-level
Instrumentation accurate simulator uservice-interaction simulator
traces
SIMTec (w/ & w/o batching) . Throughput .
Accel-Sim & latency uqsim
(x86 PIN-based tool) [ISCA 2020} ISPASS 2016
[ISPASS 2022] [:
SIMTI:: . CPUvs RPU End-to-end tail latency &
fficiency throughput/Watt & Max throughput

latency

Workloads: Social Network Microservices
Microsuite [IISWC 2018], DeathStarBench [ASPLOS 2020] and In-house benchmarks

Libraries: c++ stdlib, Intel MKL, OpenSSL, FLANN, Pthread, zlib, protobuf, gRPC and MLPack, ...

Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020
Zhang, Yanqi, Yu Gan, and Christina Delimitrou. "uqSim: Scalable and Validated Simulation of Cloud Microservices." ISPASS 2019
Alawneh, Ahmad , et al. "A SIMT Analyzer for Multi-Threaded CPU Applications.” ISPASS 2022 66

Sriraman, Akshitha, and Thomas F. Wenisch. "u suite: a benchmark suite for microservices." 1ISWC 2018
Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems.” ASPLOS 2019

Simulation Configuration

* Baseline: Single threaded CPU
and SMT8 CPU
 RPU: SIMT-32 (1 batch)

* We ensure both CPU and RPU
have the same pipeline
configuration, frequency, and
memory resources/thread for

SMT8 and our RPU

* CPU & RPU are TDP equivalent
at the same technology node

T . af 1 >
Metric CPU CPU SMT RPU
Core B-wide B-wide B-wide
Pipeline 1258-entry Ool) 125-entry Qo) 128-entry (al)
Freq 2.5 GHZ 2.0 GHZ 2.0 GHZ
#Hores a8 =0 20
Threads /core 1 SMT-8 SIMT-32 (1 batch)
Total Threads a8 640 640
AIES
Max IPC/core 5 8 64 (issue x lanes)
ALU/Bra Exec Lat l-cvele l-cyele 4-cycle
L1 Inst/core kKB 64K B G4k B
Reg File/ecore 2B 16K B 4K B
KB, B-way, 64Kk B, B-way, 206K B, B-way,
L1 Cache 3 cycles, 1-bank 3 cycles, 3-banks 8 cyvcles, 8-banks
32B /eycle 256BB feycle 2568 feyele
212K B, B-way, 212K B, S-way, 2MB, S8-way,

L2 Cache

12 eycles, 1-bank

1 2-cycles, 2-banks

20 evcles, 2-banks

DRAM

Sx DDRS5-3200,
200 3 Hl.l"ser:

10x DDR57200,
576 B /fsec

10x DDR5-7200,
576 GB/sec

Interconnect

Col) entries/thread

Ox0 Mesh
128, B-wide

11x11 Mesh
16, 1-wide

4040 Crosshar
125, B-wide

L1 capacity /thread

64K B

BRB

Bk B

L1B /eyele/thread

32B /eycle

32B feyele

8B /cyele

memBW /thread

2 B /sec

67

Chip-level Results (Accel-Sim Simulation)

e H CPU(SMT-1) mCPU(SMT-8) m RPU(SIMT-32) Higher Is better
2 5 I I I 4.3X
g 4
td 3
51 ul I I | I] I
! i
S!: mil il uul ulE uul uif uull un lI N ll mil ui} uB
@ ks = ko = @ = © @ >
5 E aE; i j = - S 8 .8 g = i '“
o 2 = =) =) = 2 &
5 jg © y— O Y o c >
: I >
H CPU(SMT-1) mCPU(SMT-8) m RPU(SIMT-32) Lower Is better

Service Latency
O N & O O

avg

7
@)

memc
p
text
user

]) | I |] I | R R
I.III.I.III I.III.I -I-I-l-

URLshort
uniquelD
userTag

McRouter
leaf shard
leaf _shard

middle-tier
middle-tler

Memcached TextSearch HDSearch Post User Average

Chip-level Results (Accel-Sim Simulation)

e H CPU(SMT-1) m CPU(SMT-8) m RPU(SIMT-32) Higher Is better
o 5 I I 4.3X
g 4
\3
51 4l I I I] I I I I
S! mil mlf uufl u anl ll 11 ll sl ull unl uil uil 0B
(o]0)

RPU system achieves 4.3x higher throughput/Watt while

McRouter
user

maintaining acceptable service latency, without
changing the programming SW interface

better

.. I |) | I | | I | 1ol
I.III.I.III I.III.I -I-I-l-

Service Latency
O N & O O

user
avg

7
@)
Q

McRouter
memc
middle-tier
leaf _shard
middle-tier
leaf _shard
URLshort
uniquelD
userTag

Memcached TextSearch HDSearch Post User Average

TPU vs GPU vs Cerebras vs
Graphcore: A Fair Comparison
between ML Hardware

/,r'_ﬁn‘\ . .
* Mahmoud Khairy Jul 23,2020 - 29 min read
A4

An Academic’s Attempt to Clear the Fog of the Machine
Learning Accelerator War

by Tim Rogers and Mahmoud Khairy on Aug 10, 2021 | Tags: Accelerators, Benchmarks, Machine Learning, Systems

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
https://www.sigarch.org/an-academics-attempt-to-clear-the-fog-of-the-machine-learning-accelerator-war/

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
https://www.sigarch.org/an-academics-attempt-to-clear-the-fog-of-the-machine-learning-accelerator-war/

ML Hardware Startup Explosion

* 1.2B investment in 2017
* Al chip market is anticipated to be 90B in 2025 (train + inference)

intel)
@A amoa
NVIDIA habang G
=habana
Google oroq ol

GRAFHCORE SambaNova

W

HUAWEI

X Tens CORNAM

T

71

How to Fairly Evaluate Existing Solutions?

* MLPerf only shows training time (i.e. performance), which is tricky!)

MLPerf

* Proposed Solution:

* Apples-to-apples comparison

* Focusing on efficiency metrics
* Performance per Dollar per Watt per Unit

* Trying to reduce the batch size effect
* Design philosophy (Data vs Model parallelism)

Read More Details in the Article

TPU vs GPU vs Cerebras vs
Graphcore: A Fair Comparison
between ML Hardware

AR _ _ 2
Q/ Mahmoud Khairy Jul 23,2020 - 29 min read (] m oo

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

73

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

Recognitions & Acknowledgements

Andrew Feldman
@andrewdfeldman

P\
David PATTERSON &

Nice article! An exceptional paper by @PurdueEngineers
Researchers looking at approaches to #ML. They
Karl Freund - 1st
Founder and Principal Analyst at Cambrian-Al Research LLC HPCE [‘”Tféwﬁm

fmo @

Mahmoud Khairy has updated his article on #Google #TPU vs #NVIDIA A100 vs Cerebras vs #Graphcore
to reflect the latest data. Nice tutorial!

5d« @

Purdue Researchers Peer into the 'Fog of the Machine Learning Accelerator War’

Machine Learning Accelerator War’ Corporate Fellow
By John Russell

Great work from Purdue!!!
#Purdue #al #hw #DeeplLearning #ML

- [4 3 :
Purdue Researchers Peer into the ‘Fog of the Mike Mantor s m Emad Barsoum @EmadBarsoumPi - Sep 28

- i

A% Mohamed Fouda « 1st
Q.esearaer. Engineer and Entrepreneur. Cofounder of 3E8, Inc. c/% SIGARCH @sigarch - Aug 10
e Tim Rogers & Mahmoud Khairy give a data-driven survey of the industrial
An amazing article from Mahmoud Khairy comparing GPUs, TPUs and challenging electronic war between machine learning accelerators.

Al accelerator chips.

B 7

Sutter Hill Ventures MLPerf

wire

HPC

Since 1967 - Covering the Fastest Computers
in the Worid and the People Who Run Them

NGEATE Morgan Lewis @erebras LBl Google

o explore the explosion

Other Publications

« Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Amogh Manjunath, Junrui Pan, Timothy G. Rogers,
Tor Aamodt, Nikos Hardavellas "AccelWattch: A Power Modeling Framework for Modern
GPUs." MICRO 2021

« Cesar Avalos, Mahmoud Khairy, Roland N. Green, Mathias Payer, Timothy G. Rogers.
“Principal Kernel Analysis: A Tractable Methodology to Simulate Scaled GPU Workloads.” MICRO 2021

« Jain Akshay*, Mahmoud Khairy*, Timothy G. Rogers, *First Coauthors
“A Quantitative Evaluation of Contemporary GPU Simulation Methodology.” SIGMETRICS 2018

75

Conclusions

* SIMT-based accelerators, like GPUs and RPUs, are promising solutions to achieve
significant enerqy efficiency in the data centers while still preserving
programmability.

* Challenges:

* (1) How to overcome the non-uniform memory access overhead for next-
generation multi-chiplet GPUs in the era of ML-driven workloads?

* (2) How to improve the energy efficiency of data center’s CPUs in the light of
microservices evolution?

* Moving forward, studying the feasibility of RPU architecture and prototyping is
an important area of research.

/.
e

Accelerator Architecture

-ATim Rogers
& Lab at Purdue

Y. -

-

-y
,/S

I\

Mengchi Zhang Aaron Barnes Akshay Jain Tsung Tai Yechen Liu

N

Roland Green Christin Bose

—

o) -
Al Al . Py
, . T Vadim Zheshen
CesarAvalos NijKan Junrui Pan Fanjia & .
Ahmad Alawneh 5 Shen Nikiforov Shen Bhaumick

77

https://engineering.purdue.edu/tgrogers/group/aalp.html

Thank You!
Q&A?

Software

Deep neural network ARCHITECTURE

\\\\\\\\\\\\\\\\\\\\ : : 1 v
“ MICROSERVICE ‘ MICROSERVICE MICROSERVICE

. mongoDB.
8

o l l l
% BUSINESS
Ve LOGIC MICROSERVICE MICROSERVICE MICROSERVICE & R P C

y o d \:,'.-{‘
— DATA MICROSERVICE ‘—r MICROSERVICE ‘
LAYER

MICROSERVICE MICROSERVICE ‘

QOO0

L 4

Learning @ @ Microservices

Hardware

PP R
sddd

TPU VCU

Accelerators 78

