
Scalable and Energy-Efficient SIMT
Systems for Deep Learning and Data

Center Microservices

Mahmoud Khairy
PhD Candidate – Final Examination

6/1/2022

abdallm@purdue.edu
https://mkhairy.github.io/

mailto:abdallm@purdue.edu
https://mkhairy.github.io/

Agenda

• Motivation and Thesis Summery (5 mins)

• LADM: Transparent Multi-GPU Scaling (7 mins)

• Accel-Sim: An Extensible GPU simulation framework (5 mins)

• RPU: A SIMT System for Data Center Microservices (25 mins)
• Overview & Key Observations

• RPU Hardware & Software Stack

• Experimental Setup & Results

• Conclusions & Future Work (3 mins)

• Q&A (15+ mins)

2

Growth of Hyperscale Data Centers

• The growth of hyperscale data
centers has steadily increased in
the last decade

• The next era of IoT and AI

• Challenges:
• Slowing growth of Moore’s law
• High power consumption
• Large carbon footprint
• By 2030, the data centers will

consume 10% of the total electricity
demand

3https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

Datacenter Power Breakdown

4[1] Barroso, Luiz André, and Urs Hölzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018

[2] Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems." ACM TACO 2016
[3] Powell, Michael D., et al. "CAMP: A technique to estimate per-structure power at run-time using a few simple parameters." HPCA 2009

30% of datacenter power is consumed in CPU’s instruction supply (frontend & OoO)

Frontend (24%)

OoO (27%)

Reg &
Execute (24%)

Cache (25%)

Datacenter Power Breakdown
(from Google)

CPU Power Breakdown
(Intel Skylake)

Datacenter Paradigm Shifts (HW-SW Codesign)

5

TPU VCU

......

Hardware

Software

Accelerators

Datacenter Paradigm Shifts (HW-SW Codesign)

6

TPU VCU

......

Hardware

Software

Deep
Learning

Accelerators

Microservices

My Ph.D. Thesis Contributions

7

TPU VCU

Hardware

Software

Deep
Learning Microservices

Accelerators

RPU

Efficient Multi-GPU
→ LADM [MICRO’20]
→ [SigArch’21]

Energy-Efficient uService Processing
→ RPU [under review]

Accurate and Extensible Simulator
→ Accel-Sim [ISCA’20] [SIGMETRICS’18]

Thesis Statement (Verbatim)

• SIMT-based accelerators, like GPUs and my proposed RPUs, are
promising solutions to achieve significant energy efficiency while still
preserving programmability in the twilight of Moore’s Law.

• I propose three approaches to build next-generation scalable and
energy-efficient SIMT systems:

(1) Detect and optimize for each type of locality exist in the DL and HPC
workloads to overcome NUMA effects,

(2) Exploit microservices execution similarity and eliminate redundancy to
improve data center energy efficiency, and

(3) Build extensible and validated SIMT simulation tools to keep-up with
industrial changes.

8

My Ph.D. Thesis Contributions

9

TPU VCU

Hardware

Software

Deep
Learning Microservices

Accelerators

RPU

Efficient Multi-GPU
→ LADM [MICRO’20]
→ [SigArch’21]

Accurate and Extensible Simulator
→ Accel-Sim [ISCA’20] [SIGMETRICS’18]

Single Instruction Multiple Thread (SIMT)

• GPGPU Programming Model
• Single Program Multiple Data

• Express parallelism in terms of fine-
grain hierarchal threads

10

• GPU Hardware:
• Aggregate every 32/64 threads in a warp

Warp of
Threads

Instruction
Fetch

Ex
Lane 0

Ex
Lane N

Instruction
Decoder

SIMT
stack

• SIMT = One Instruction, Multiple Threads

Lock-step
execution

………

0

1

2

3

4

5

6

7

8

9

30 60 90 120 150 180 210 240

Scalable GPGPU Workloads

GPU Performance Scalability is at Risk

11

Maxwell GPU
8B Tr @28nm

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Number of Streaming Multiprocessors (SMs)

Pascal GPU
15B Tr @16nm

Volta GPU
21B Tr @12nm

Scaling all the GPU resources: Increasing SMs, memory bandwidth and interconnection bandwidth.

??
@7-3nm

Low Yield
Very Expensive

Hierarchical Multi-GPU Multi-Chiplet

12

Single Logical GPU

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020

Hierarchical Multi-GPU Multi-Chiplet

13

Single Logical GPU

Non-Uniform Memory Access (NUMA)
→ Decreased Performance and Energy Efficiency

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020

Hierarchical Multi-GPU Multi-Chiplet

14

Single Logical GPU

Non-Uniform Memory Access (NUMA)
→ Decreased Performance and Energy Efficiency

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020

Transparently overcoming these NUMA effects will be a
challenging problem for GPUs over the next decade.

NUMA-GPU is already out there

Intel Xe GPU server
Xe link (6 GPUs)

Nvidia Ampere (2 virtual GPU clusters)

Nvidia DGX server
Nvlink (4-16 GPUs)

AMD GPU server
Infinity link (4-8 GPUs)

Intel Ponte Vecchio (8 tiles per GPU)AMD Instinct MI200

Socket-based Multi-GPU:

Multi-Chiplet GPU:

Apple M1 Ultra

NUMA Impact: Performance Loss

16

Monolithic GPU Chip
(256 SMs + 2.8 TB/sec BW)

4 GPUs with each of
(64 SMs + 700 GB/sec BW)

GPU

GPU0 GPU1

GPU2 GPU3

NUMA Impact: Performance Loss

17

Topology

Link BW
(GB/sec)

0
0.2
0.4
0.6
0.8

1

Round-Robin-Sched + FG Data Interleaving

Switch Switch Switch Ring Ring

90 180 360 1400 2800

N
o

rm
al

iz
e

d
 P

e
rf

.

Monolithic Ideal Performance
Monolithic GPU Chip

(256 SMs + 2.8 TB/sec BW)

4 GPUs with each of
(64 SMs + 700 GB/sec BW)

GPU

GPU0 GPU1

GPU2 GPU3

Cost Effective

NUMA Impact: Performance Loss

18

Topology

Link BW
(GB/sec)

0
0.2
0.4
0.6
0.8

1

Round-Robin-Sched + FG Data Interleaving

Switch Switch Switch Ring Ring

90 180 360 1400 2800

N
o

rm
al

iz
e

d
 P

e
rf

.

Monolithic Ideal Performance
Monolithic GPU Chip

(256 SMs + 2.8 TB/sec BW)

4 GPUs with each of
(64 SMs + 700 GB/sec BW)

GPU

GPU0 GPU1

GPU2 GPU3

Very Expensive

Intelligent
SW/HW

Cost Effective

NUMA Impact: Performance Loss

19

Topology

Link BW
(GB/sec)

0
0.2
0.4
0.6
0.8

1

Round-Robin-Sched + FG Data Interleaving

Switch Switch Switch Ring Ring

90 180 360 1400 2800

N
o

rm
al

iz
e

d
 P

e
rf

.

Monolithic Ideal Performance
Monolithic GPU Chip

(256 SMs + 2.8 TB/sec BW)

4 GPUs with each of
(64 SMs + 700 GB/sec BW)

GPU

GPU0 GPU1

GPU2 GPU3

Very Expensive

Intelligent
SW/HW

Ideally, we would like to achieve the same monolithic chip
performance with the cheapest possible interconnection (Perf/$)

NUMA Impact: Decreased Energy Efficiency
(Perf/Watt)

• Energy cost per task could double

• 50% of the future GPU power is
anticipated to be consumed on
off-chiplet traffic

20
Arunkumar, et al. "Understanding the future of energy efficiency in multi-module gpus." HPCA 2019

Number of Chiplets

Traditional NUMA Solutions

21

CPU0 CPU1

CPU2 CPU3

DRAM DRAM

DRAMDRAM

Reactive Solutions:
First-touch page placement
Page migration/duplication

Work redistribution

GPU0 GPU1

GPU2 GPU3

HBM HBM

HBMHBM

Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA’16
Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18

Traditional NUMA Solutions

22

CPU0 CPU1

CPU2 CPU3

DRAM DRAM

DRAMDRAM

Reactive Solutions:
First-touch page placement
Page migration/duplication

Work redistribution

GPU0 GPU1

GPU2 GPU3

HBM HBM

HBMHBM

Substantial
Overhead

Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA’16
Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18

PCIe bottleneck, No Context Switching support
Limited GPU Memory capacity
Massive threads’ context

Traditional NUMA Solutions

23

CPU0 CPU1

CPU2 CPU3

DRAM DRAM

DRAMDRAM

Reactive Solutions:
First-touch page placement
Page migration/duplication

Work redistribution

GPU0 GPU1

GPU2 GPU3

HBM HBM

HBMHBM

Substantial
Overhead

Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA’16
Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18

PCIe bottleneck, No Context Switching support
Limited GPU Memory capacity
Massive threads’ context

Key Observation #1: NUMA-GPU favors a proactive solution
based on static program analysis

GPU vs CPU Programming Model

24

CPU Thread 1

CPU Thread 2

CPU Thread 3

CPU Thread 4

TB1 TB2 TB3 TB4

TB5 TB6 TB7 TB8

TB9 TB10 TB11 TB12

TB13 TB14 TB15 TB16

CPU flat coarse-grain threadsGPU hierarchical fine-grain threads

gridDim.x

b
lo

ck
D

im
.y

blockDim.x

T1 T2

T3 T4

gr
id

D
im

.y

(bid.x, bid.y)

(tid.x, tid.y)

+ Scheduling at thread-block level
+ Expressive Thread IDs

+ Low work/spatial locality per thread

Spatial locality

GPU vs CPU Programming Model

25

CPU Thread 1

CPU Thread 2

CPU Thread 3

CPU Thread 4

TB1 TB2 TB3 TB4

TB5 TB6 TB7 TB8

TB9 TB10 TB11 TB12

TB13 TB14 TB15 TB16

CPU flat coarse-grain threadsGPU hierarchical fine-grain threads

gridDim.x

b
lo

ck
D

im
.y

blockDim.x

T1 T2

T3 T4

gr
id

D
im

.y

(bid.x, bid.y)

(tid.x, tid.y)

+ Scheduling at thread-block level
+ Expressive Thread IDs

+ Low work/spatial locality per thread

Spatial locality

Key Observation #2: NUMA-GPU should consider the
hierarchy and massive threads of GPU programming model

Locality-Aware Data Management (LADM)

26

Node 0

Compiler Runtime Hardware

Driver

LASP

executable

Runtime
Configuration

Locality
Table

kernel launch command

(BDim, GDim)

void main() {
mallocMan(A);

mallocMan(B);

klaunch(B, A);

}

Compiler

Source CUDA file

Node 1
Index

Analysis

Threadblock-Centric
Static Index Analysis

Locality-Aware Scheduling and Placement
(LASP)

…..

Node N

LADM [MICRO’20]

• Key Idea: LADM exploits a threadblock-centric index analysis to
optimize runtime threadblock scheduling, data placement and
cache policy.

• Key Results: LADM decreases inter-GPU memory traffic by 4x and
comes within 83% of ideal monolithic performance while using
limited and cheap interconnect technology.

27

More details can be found in the thesis & our MICRO’20 paper

Architecture Simulators

• Simulation is commonly used to estimate the effectiveness of a
new architectural design idea.

• The simulation tools used by industry are often not released for
open use.

28

Academic
Simulators

Industrial Designs/
Simulators

Incorrect baseline assumptions
→ unrealistic issues or incorrect conclusions

Accuracy Gap

Architecture Simulators

• Simulation is commonly used to estimate the effectiveness of a
new architectural design idea.

• The simulation tools used by industry are often not released for
open use.

29

Academic
Simulators

Industrial Designs/
Simulators

Incorrect baseline assumptions
→ unrealistic issues or incorrect conclusions

Accuracy Gap

Research cannot look ahead, if its baseline
assumptions are too far behind

GPU Accelerators are Evolving Rapidly

30

2009

Fermi
• mISA sm20
• Caches/Atomics
• Dual warp scheduler

2011 2013 2015 2017 2019 2022

Kepler
• mISA sm30
• DP unit
• Dynamic Parallelism
• Dual issue

Maxwell
• mISA sm50
• Subcore model

Pascal
• mISA sm60
• Unified memory
• HBM
• FP16 support
• Streaming l1 cache

Ampere
• mISA sm80
• Sparse tensor cores
• Asynchronous copy

and barriers
• HBM2

Volta
• mISA sm70
• Scoped synchronization
• Tensor cores & INT unit
• Independent threads SIMT
• Cooperative Groups
• Unified adaptive cache

Turing
• mISA sm75
• New tensor cores
• RT-cores
• UDP cores

New machine ISA and architecture designs every 1-2 years!

Hopper
??

We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.

GPU Accelerators are Evolving Rapidly

31

2009

Fermi
• mISA sm20
• Caches/Atomics
• Dual warp scheduler

2011 2013 2015 2017 2019 2022

Kepler
• mISA sm30
• DP unit
• Dynamic Parallelism
• Dual issue

Maxwell
• mISA sm50
• Subcore model

Pascal
• mISA sm60
• Unified memory
• HBM
• FP16 support
• Streaming l1 cache

Ampere
• mISA sm80
• Sparse tensor cores
• Asynchronous copy

and barriers
• HBM2

Volta
• mISA sm70
• Scoped synchronization
• Tensor cores & INT unit
• Independent threads SIMT
• Cooperative Groups
• Unified adaptive cache

Turing
• mISA sm75
• New tensor cores
• RT-cores
• UDP cores

New machine ISA and architecture designs every 1-2 years!

Hopper
??

We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.

How can academic open-source simulators keep up
with industrial designs quickly and accurately?

Accel-Sim [ISCA’20]

• Accel-Sim introduces a simulation framework to help solve the problem of
keeping simulators up-to-date with contemporary designs.

• Key Results: Modeling and validating against five generations of NVIDIA GPUs
ranging from Kepler to Ampere with correlation > 0.97 in all instances.

32

https://accel-sim.github.io/

• The most widely used GPU simulator by the research community since its release
• Usage beyond academia: Sandia National Labs, LLNL, some industrial companies &

startups (e.g. Rivos startup among others)

Accel-Sim Popularity/Impact

0
2
4
6
8

10
12

GPU simulator usage

#c
it

at
io

n
s

GPU simulator usage in the top architecture conferences
(MICRO, ISCA, HPCA, ASPLOS) since June 2019

https://accel-sim.github.io/

My Ph.D. Thesis Contributions

34

TPU VCU

Hardware

Software

Deep
Learning Microservices

Accelerators

RPU

Efficient uService Processing
→ RPU [under review]

Request Processing Unit (RPU): Single Instruction
Multiple Request Processing for Energy-Efficient

Data Center Microservices

[under review at a top tier conference]

Mahmoud Khairy, Ahmad Alawneh, Aaron Barnes, and Timothy G. Rogers
Purdue University

Recall: Datacenter Power Breakdown

36[1] Barroso, Luiz André, and Urs Hölzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018

[2] Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems." ACM TACO 2016
[3] Powell, Michael D., et al. "CAMP: A technique to estimate per-structure power at run-time using a few simple parameters." HPCA 2009

30% of datacenter power is consumed in CPU’s instruction supply (frontend & OoO)

Frontend (24%)

OoO (27%)

Reg &
Execute (24%)

Cache (25%)

Datacenter Power Breakdown
(from Google)

CPU Power Breakdown
(Intel Skylake)

1 Application, Million of Users

Log-in reqs

log in microservice

search reqs

search microservice

Private Datacenter

Public Datacenter

Key Observation#1: Single Program Multiple Data (SPMD) are abundant in the
cloud, either in private or public datacenters 37

“Similar” Request-Level Parallelism
1000s of independent requests are all running the same code

Server Workloads on GPU’s SIMT

38

• Key Idea: batch requests and run on GPU’s SIMT
• Advantages: Significant Energy Efficiency (throughput/watts) vs CPU
• Drawbacks:

• (1) Hindering Programmability (C++/PHP vs CUDA)
• (2) Limited System Calls Support (CPU-GPU communication)
• (3) High service latency

• In Rhythm [ASPLOS’14], GPU TITANX reports 6000X slower latency than CPU
• In MemcachedGPU [SoCC’15], GPU was 10X slower than CPU

SPEC-web on GPU [ASPLOS’2014]
Memcached on GPU [SoCC’2015]

“Slower but energy-efficient wimpy cores only win
for general data center workloads if their single-

core speed is reasonably close to that of mid-range
brawny cores”

39

Urs Hölzle
Google SVP

Hölzle, Urs. "Brawny cores still beat wimpy cores, most of the time." IEEE MICRO 2010

Off-Chip BW Scaling

40

Key Observation #2: There is available headroom to increase on-chip throughput
(thread count) in the foreseeable future.

How to increase on-chip throughput of CPU?

• Direction#1 (industry standard): Add more Chiplets + Cores + SMT

• Direction#2 (this work): Move to SIMT
• More energy efficient (throughput/watts)

• Cost-effective (throughput/area)

• Better scalability

41

42

“Let’s Bring the SIMT efficiency to the CPU world!”

SIMT Efficiency

.......

Load A only once

CPU Multi-Core with Simultaneous Multi-Threading

Fetch &
Decode

Schedule

Issue &
Dispatch

Lock
step

Ex
Lane 0

Ex
Lane N

.......

RPU’s SIMT Architecture

Reqs
Batch

Ex

Fetch &
Decode

Issue &
Dispatch

Load A

Core1

Req1

Schedule

Ex

Fetch &
Decode

Issue &
Dispatch

Load A

Req2

Schedule

Ex

Load A

Fetch &
Decode

Schedule

Issue &
Dispatch

ReqN

CoreN
Thread2Thread1

Amortize
frontend overhead

Improving locality &
Reducing generated

traffic

Batch-Aware
HTTP Server

RPU HW
(Latency-

Optimized
SIMT Engine)

Batch Similar Requests
(e.g. per API)

Client Requests
(HTTP/RPC calls)

Fetch &
Decode

OoO

Execute Execute…….

Dispatch
& Issue

Lockstep
Execution

SIMT
stack

Branch
Pred

RPU Core

RPU Overview

CPU vs GPU vs RPU

Metric CPU GPU RPU

Core model OoO In-Order OoO

Freq High Moderate High

Programming General-Purpose CUDA/OpenCL General-Purpose

ISA x86/ARM HSAIL/PTX x86/ARM

System Calls Support Yes No Yes

Thread grain Coarse grain Fine grain Coarse grain

TLP per core Low (1-8) Massive (2K) Moderate (8-32)

Thread model SMT SIMT SIMT

Consistency Variant Weak+NMCA* Weak+NMCA*

Coherence Complex Relaxed Simple Relaxed Simple

Interconnect Mesh/Ring Crossbar Crossbar

45

The RPU takes
advantage of the
latency
optimizations
and programmability
of the CPU

& SIMT efficiency
and memory model
scalability of the
GPU

*NMCA: non-multi copy atomicity
Ren, Xiaowei, et al. “HMG: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020
Hechtman, Blake A., et al. "QuickRelease: A throughput-oriented approach to release consistency on GPUs." HPCA 2014

RPU Executive Summary

• Request Similarity is abundant in the data center.

• We start with OoO CPU design and then turns it to SIMT execution to
maximize chip utilization and exploit the similarity.

• We co-design the software stack to support batching and awareness
of SIMT execution.

46

• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Higher instruction execution & L1 hit latency
• Due to larger execution units & cache resources at the backend

Deep Dive into RPU’s Challenges

47

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call
(10 ms)

Reconvergence?

10 ns

HW/SW Stack

48

Webservice (C++, PHP, …)

ARM/x86 compiler

HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(Process, VM, I/Os)

Multi Core CPU

CPU SW Stack

CUDA

CUDA compiler

Nvidia Triton HTTP server

CUDA runtime/libs
(cudalib, tensorRT, ..)

OS
(I/Os management)

CUDA driver
(VM/thread management)

GPU Hardware

Webservice (C++, PHP, …)

ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(I/Os management)

RPU driver
(VM/thread management)

RPU Hardware

GPU SW Stack RPU SW Stack

→ For RPU, we keep the SW programming interface as in the CPU
→ RPU is binary backward compatible with CPU webservices.

→ Some VM&process management system calls are reimplemented in the RPU driver to
be batch-aware

HW/SW Stack

49

Webservice (C++, PHP, …)

ARM/x86 compiler

HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(Process, VM, I/Os)

Multi Core CPU

CPU SW Stack

CUDA

CUDA compiler

Nvidia Triton HTTP server

CUDA runtime/libs
(cudalib, tensorRT, ..)

OS
(I/Os management)

CUDA driver
(VM/thread management)

GPU Hardware

Webservice (C++, PHP, …)

ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(I/Os management)

RPU driver
(VM/thread management)

RPU Hardware

GPU SW Stack RPU SW Stack

→ For RPU, we keep the SW programming interface as in the CPU
→ RPU is binary backward compatible with CPU webservices.

→ Some VM&process management system calls are reimplemented in the RPU driver to
be batch-aware

0
10
20
30
40
50
60
70
80
90

100
M

cR
o

u
te

r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached TextSearchHDImageSearch Post User Average

SI
M

T
Ef

fi
ci

e
n

cy
 (

%
)

SIMT Control Efficiency

65%

Microservices

Notes: (1) Batch Size = 32, (2) System Calls are not included, (3) SIMT Eff = scalar-instructions / (batch-instructions * batch-
size), (4) fine-grain locking are assumed

0
10
20
30
40
50
60
70
80
90

100

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached TextSearch HDImageSearch Post User Average

SI
M

T
Ef

fi
ci

e
n

cy
 (

%
)

Naive per-API per-API + per-Argument-Size

SIMT Control Efficiency (Optimized)

77%

Microservices

92%

65%

Web Server

UniqueID

URLShorten

TextSearch

Shard1 Shardn....

ImageSearch

Shard1 Shardn

Post
Text

UserTag

Recommender

Shard1 Shardn….

User

SocialGraph

McRouter

Storage

Memcached

McRouter

Storage

McRouter

Storage

Memcached

Memcached

Frontend Logic Caching & Storage

User
Storage

Post
Storage

Graph
Storage

REST/RPC calls
(via Network)

Requests
Received

….

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)
→ Instead of batching individual microservices, we propose batching in all microservices in the graph

System-Level RPU Batching

HW/SW Stack

53

Webservice (C++, PHP, …)

ARM/x86 compiler

HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(Process, VM, I/Os)

Multi Core CPU

CPU SW Stack

CUDA

CUDA compiler

Nvidia Triton HTTP server

CUDA runtime/libs
(cudalib, tensorRT, ..)

OS
(I/Os management)

CUDA driver
(VM/thread management)

GPU Hardware

Webservice (C++, PHP, …)

ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(I/Os management)

RPU driver
(VM/thread management)

RPU Hardware

GPU SW Stack RPU SW Stack

RPU HW

54

Control Divergence Handling

Serialize divergent paths

1. / / BBA Basic Block "A"

2. if (x > 0)

3. {

4. / / BBB

5. }

6. else

7. {

8. / / BBC

9. }

10. / / BBD

A (1111)

C (0011)B (1100)

D (1111)

PC RPC Active
Mask

D … 1111

C D 0011

B D 1100

Divergent code example Control Flow with Active Mask HW SIMT stack after line#2

Reconvergence

System-Level Batch Splitting

56

1. Procedure get_user(int userid)

2. /* first try the cache */

3. data = memcached_fetch("userrow:" + userid)

4. if not data /* SIMT Divergence*/

5. /* not found : request database */

6. data = db_select("SELECT * FROM users
WHERE userid = ?", userid)

7. /* then store in cache until next get */

8. memcached_add("userrow:" + userid, data)

9. end /* SIMT Reconvergence Point*/

10. return data

User

Storage

Memcached

Millisecond latency

Microsecond latency

Batch

WaitSplit

A (1111)

B (0001)

D (1111)

Storage access
(10 ms)

Reconvergence?

Control Flow with Active Mask

• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Higher instruction execution & L1 hit latency
• More execution units & cache resources at the backend

Deep Dive into RPU’s Challenges

57

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call
(10 ms)

Reconvergence?

10 ns

Memory Coalescing Optimizations

58Stack segment coalescing with data interleaving

HW memory coalescing unit (MCU) for
Heap & Data segments

T1

Load A

T2

Load A

T3

Load A

T4

Load A

Independent threads execution (CPU)

T1 T2

Load A

T3 T4

SIMT execution with MCU

Load A only once
and broadcast

MCU

Virtual space

T1 Stack
Int x
Int y

Physical space

Hardware
Support

TLB mapping

Tn Stack
Int x
Int y

Data Seg

Heap Seg

Batch Stack
T1(x)
T2(x)

...
Tn(x)
T1(y)
T2(y)

...
Tn(y)

Data Seg

Heap Seg

T2 Stack
Int x
Int y

Code SegCode Seg

….

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
M

cR
o

u
te

r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached TextSearch HDImageSearch Post User Average

L1
 A

cc
e

ss
e

s

CPU Traffic

Traffic Reduction

cache contention
& bank conflicts

→ 4x traffic reduction compared to CPU

0

50

100

150

200

250

CPU(SMT1) RPU(B32) RPU(B16) RPU(B8) RPU(B4)

L1
 M

P
K

I
HDSearch-leaf HDSearch-midtier TextSearch-leaf TextSearch-midtier McRouter
Memcached-backend Memcached-memc post text URLshort
uniqueID userTag user

Batch Size Tuning to Alleviate Cache Contention

L1/Thread 64KB 8KB 16KB 32KB 64KB

#Threads

0

50

100

150

200

250

CPU(SMT1) RPU(B32) RPU(B16) RPU(B8) RPU(B4)

L1
 M

P
K

I
HDSearch-leaf HDSearch-midtier TextSearch-leaf TextSearch-midtier McRouter
Memcached-backend Memcached-memc post text URLshort
uniqueID userTag user

Batch Size Tuning to Alleviate Cache Contention

For all microservices, we run at full batch size (32),
except Text-Leaf & ImageSearch-Leaf (batch size = 8)

what about bank conflicts?

L1/Thread 64KB 8KB 16KB 32KB 64KB

#Threads

SIMT-Agnostic Memory Allocator

62

1. Microservice ()

2. //Create a private temporary array in the

3. // heap segment

4. int* temp = new int[n];

5. ………..

6. for(int i=0; i<n; i++)

7. temp[i] = i; //Write to the temp

8. ………..

9. for(int i=0; i<n; i++)

10. sum += temp[i]; //Read from the temp

11. ………..

Severe Bank Conflicts

B0 B1 B2 B3

T0
0xf6746000

temp array address

C++ SIMT-Agnostic Memory Allocator

T3
0x78f47000

T1
0x80764040

T2
0x78f47040

L1 cache
banks

Assume data are interleaved every 32B

SIMT-Aware Memory Allocator

63

1. Microservice ()

2. //Create a private temporary array in the

3. // heap segment

4. int* temp = new int[n];

5. ………..

6. for(int i=0; i<n; i++)

7. temp[i] = i; //Write to the temp

8. ………..

9. for(int i=0; i<n; i++)

10. sum += temp[i]; //Read from the temp

11. ………..

B0 B1 B2 B3

C++ SIMT-Aware Memory Allocator

L1 cache
banks

T0
0xf6746000

T1
0x78f47020

T2
0x80764040

T3
0x78f47060

→ ensures start_address%(n*tid) = 0

Assume data are interleaved every 32B

Conflict-free

Evaluation

• Analytical Model

• Simulation-based evaluation
• Chip-level evaluation

• System-level evaluation

64

Energy Efficiency of CPU vs RPU (Analytical Model)

65

𝑪𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚

𝑹𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚
=

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 +𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝟏 − 𝒓 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 +
𝟏

𝒏 ∗ 𝒆𝒇𝒇
𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝒓 ∗ 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚

SIMT Efficiency=92%

batch size (n) = 8-32 data locality ratio =75%

Amortized
factors = 50-80%

→ an anticipated 2-5x energy efficiency gain can be achieved with RPU vs CPU

Experimental Setup

66

Workloads: Social Network Microservices
Microsuite [IISWC 2018], DeathStarBench [ASPLOS 2020] and In-house benchmarks
Libraries: c++ stdlib, Intel MKL, OpenSSL, FLANN, Pthread, zlib, protobuf, gRPC and MLPack, …

SIMTec
(x86 PIN-based tool)

[ISPASS 2022]

Accel-Sim
[ISCA 2020]

uqsim
[ISPASS 2019]

SIMT Efficiency

Chip-level cycle
accurate simulator

System-level
uservice-interaction simulator

CPU vs RPU
throughput/Watt &

latency

traces
(w/ & w/o batching)

Dynamic
Instrumentation

End-to-end tail latency &
Max throughput

Throughput
& latency

Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020

Zhang, Yanqi, Yu Gan, and Christina Delimitrou. "uqSim: Scalable and Validated Simulation of Cloud Microservices." ISPASS 2019

Alawneh, Ahmad , et al. "A SIMT Analyzer for Multi-Threaded CPU Applications." ISPASS 2022

Sriraman, Akshitha, and Thomas F. Wenisch. "μ suite: a benchmark suite for microservices." IISWC 2018

Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems.“ ASPLOS 2019

Simulation Configuration

67

• Baseline: Single threaded CPU
and SMT8 CPU

• RPU: SIMT-32 (1 batch)

• We ensure both CPU and RPU
have the same pipeline
configuration, frequency, and
memory resources/thread for
SMT8 and our RPU

• CPU & RPU are TDP equivalent
at the same technology node

0

2

4

6

8

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached TextSearch HDSearch Post User Average

CPU(SMT-1) CPU(SMT-8) RPU(SIMT-32)

Se
rv

ic
e

 L
at

e
n

cy

0
1
2
3
4
5
6

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_
sh

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached TextSearch HDSearch Post User Average

CPU(SMT-1) CPU(SMT-8) RPU(SIMT-32)

Q
P

S/
w

at
t

Chip-level Results (Accel-Sim Simulation)

4.3X

1.3X

Lower Is better

Higher Is better

0

2

4

6

8

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached TextSearch HDSearch Post User Average

CPU(SMT-1) CPU(SMT-8) RPU(SIMT-32)

Se
rv

ic
e

 L
at

e
n

cy

0
1
2
3
4
5
6

M
cR

o
u

te
r

b
ac

ke
n

d

m
e

m
c

m
id

d
le

-t
ie

r

le
af

_
sh

ar
d

m
id

d
le

-t
ie

r

le
af

_s
h

ar
d

p
o

st

te
xt

U
R

Ls
h

o
rt

u
n

iq
u

e
ID

u
se

rT
ag

u
se

r

av
g

Memcached TextSearch HDSearch Post User Average

CPU(SMT-1) CPU(SMT-8) RPU(SIMT-32)

Q
P

S/
w

at
t

Chip-level Results (Accel-Sim Simulation)

4.3X

1.3X

Lower Is better

Higher Is better

RPU system achieves 4.3x higher throughput/Watt while
maintaining acceptable service latency, without

changing the programming SW interface

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
https://www.sigarch.org/an-academics-attempt-to-clear-the-fog-of-the-machine-learning-accelerator-war/

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
https://www.sigarch.org/an-academics-attempt-to-clear-the-fog-of-the-machine-learning-accelerator-war/

ML Hardware Startup Explosion

• 1.2B investment in 2017

• AI chip market is anticipated to be 90B in 2025 (train + inference)

71

How to Fairly Evaluate Existing Solutions?

• MLPerf only shows training time (i.e. performance), which is tricky!

• Proposed Solution:
• Apples-to-apples comparison

• Focusing on efficiency metrics
• Performance per Dollar per Watt per Unit

• Trying to reduce the batch size effect

• Design philosophy (Data vs Model parallelism)

72

73

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

Read More Details in the Article

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

Recognitions & Acknowledgements

Other Publications

• Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Amogh Manjunath, Junrui Pan, Timothy G. Rogers,
Tor Aamodt, Nikos Hardavellas "AccelWattch: A Power Modeling Framework for Modern
GPUs." MICRO 2021

• Cesar Avalos, Mahmoud Khairy, Roland N. Green, Mathias Payer, Timothy G. Rogers.
“Principal Kernel Analysis: A Tractable Methodology to Simulate Scaled GPU Workloads.” MICRO 2021

• Jain Akshay*, Mahmoud Khairy*, Timothy G. Rogers, *First Coauthors
“A Quantitative Evaluation of Contemporary GPU Simulation Methodology.” SIGMETRICS 2018

• ……..

75

Conclusions
• SIMT-based accelerators, like GPUs and RPUs, are promising solutions to achieve

significant energy efficiency in the data centers while still preserving
programmability.

• Challenges:
• (1) How to overcome the non-uniform memory access overhead for next-

generation multi-chiplet GPUs in the era of ML-driven workloads?
• (2) How to improve the energy efficiency of data center’s CPUs in the light of

microservices evolution?

• Moving forward, studying the feasibility of RPU architecture and prototyping is
an important area of research.

76

77

Accelerator Architecture
Lab at Purdue

Tim Rogers

Mengchi Zhang Aaron Barnes

Ahmad Alawneh Cesar Avalos Junrui Pan

Akshay Jain

Vadim
Nikiforov

Zhesheng
Shen

Roland GreenTsung Tai Yechen Liu

Abhishek
Bhaumick

Christin Bose

Ni Kang Fanjia
Shen

https://engineering.purdue.edu/tgrogers/group/aalp.html

78

TPU VCU

Hardware

Software

Deep
Learning Microservices

Accelerators

RPU

Thank You!
Q&A?

