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• Experimental Setup & Results
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Growth of Hyperscale Data Centers

• The growth of hyperscale data 
centers has steadily increased in 
the last decade

• The next era of IoT and AI

• Challenges:
• Slowing growth of Moore’s law
• High power consumption 
• Large carbon footprint
• By 2030, the data centers will 

consume 10% of the total electricity 
demand

3https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y

https://www.datacenterknowledge.com/cloud/analysts-there-are-now-more-500-hyperscale-data-centers-world
https://www.nature.com/articles/d41586-018-06610-y


Datacenter Power Breakdown

4[1] Barroso, Luiz André, and Urs Hölzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018

[2] Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems." ACM TACO 2016
[3] Powell, Michael D., et al. "CAMP: A technique to estimate per-structure power at run-time using a few simple parameters." HPCA 2009

30% of datacenter power is consumed in CPU’s instruction supply (frontend & OoO)

Frontend (24%)

OoO (27%)

Reg & 
Execute (24%)

Cache (25%)

Datacenter Power Breakdown
(from Google)

CPU Power Breakdown
(Intel Skylake)



Datacenter Paradigm Shifts (HW-SW Codesign)
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My Ph.D. Thesis Contributions
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TPU VCU

Hardware

Software

Deep 
Learning Microservices

Accelerators

RPU

Efficient Multi-GPU
→ LADM [MICRO’20]
→ [SigArch’21]

Energy-Efficient uService Processing
→ RPU [under review]

Accurate and Extensible Simulator 
→ Accel-Sim [ISCA’20] [SIGMETRICS’18]



Thesis Statement (Verbatim)

• SIMT-based accelerators, like GPUs and my proposed RPUs, are 
promising solutions to achieve significant energy efficiency while still 
preserving programmability in the twilight of Moore’s Law.

• I propose three approaches to build next-generation scalable and 
energy-efficient SIMT systems: 

(1) Detect and optimize for each type of locality exist in the DL and HPC 
workloads to overcome NUMA effects,

(2) Exploit microservices execution similarity and eliminate redundancy to 
improve data center energy efficiency, and

(3) Build extensible and validated SIMT simulation tools to keep-up with 
industrial changes.

8



My Ph.D. Thesis Contributions
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Single Instruction Multiple Thread (SIMT)

• GPGPU Programming Model
• Single Program Multiple Data

• Express parallelism in terms of fine-
grain hierarchal threads

10

• GPU Hardware:
• Aggregate every 32/64 threads in a warp

Warp of 
Threads

Instruction 
Fetch

Ex
Lane 0

Ex
Lane N

Instruction 
Decoder

SIMT
stack

• SIMT = One Instruction, Multiple Threads

Lock-step
execution

………
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Scalable GPGPU Workloads

GPU Performance Scalability is at Risk
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??
@7-3nm

Low Yield
Very Expensive



Hierarchical Multi-GPU Multi-Chiplet

12

Single Logical GPU

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020



Hierarchical Multi-GPU Multi-Chiplet
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Single Logical GPU

Non-Uniform Memory Access (NUMA)
→ Decreased Performance and Energy Efficiency

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020



Hierarchical Multi-GPU Multi-Chiplet

14

Single Logical GPU

Non-Uniform Memory Access (NUMA)
→ Decreased Performance and Energy Efficiency

Arunkumar, et al. "MCM-GPU: Multi-chip-module GPUs for continued performance scalability” ISCA 2017
Milic, et al. "Beyond the socket: NUMA-aware GPUs." MICRO 2017
Ren, Xiaowei, et al. "Hmg: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020

Transparently overcoming these NUMA effects will be a 
challenging problem for GPUs over the next decade.



NUMA-GPU is already out there

Intel Xe GPU server
Xe link (6 GPUs)

Nvidia Ampere (2 virtual GPU clusters)

Nvidia DGX server
Nvlink (4-16 GPUs)

AMD GPU server
Infinity link (4-8 GPUs)

Intel Ponte Vecchio (8 tiles per GPU)AMD Instinct MI200

Socket-based Multi-GPU:

Multi-Chiplet GPU:

Apple M1 Ultra



NUMA Impact: Performance Loss
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Monolithic GPU Chip
(256 SMs + 2.8 TB/sec BW)

4 GPUs with each of 
(64 SMs + 700 GB/sec BW)

GPU

GPU0 GPU1

GPU2 GPU3



NUMA Impact: Performance Loss
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Cost Effective

NUMA Impact: Performance Loss
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Cost Effective

NUMA Impact: Performance Loss
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Ideally, we would like to achieve the same monolithic chip 
performance with the cheapest possible interconnection (Perf/$)



NUMA Impact: Decreased Energy Efficiency 
(Perf/Watt)

• Energy cost per task could double

• 50% of the future GPU power is 
anticipated to be consumed on 
off-chiplet traffic

20
Arunkumar, et al. "Understanding the future of energy efficiency in multi-module gpus." HPCA 2019

Number of Chiplets



Traditional NUMA Solutions
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CPU0 CPU1

CPU2 CPU3

DRAM DRAM

DRAMDRAM

Reactive Solutions:
First-touch page placement
Page migration/duplication

Work redistribution

GPU0 GPU1

GPU2 GPU3

HBM HBM

HBMHBM

Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA’16
Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18



Traditional NUMA Solutions
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Reactive Solutions:
First-touch page placement
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Work redistribution
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Substantial 
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Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA’16
Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18

PCIe bottleneck, No Context Switching support
Limited GPU Memory capacity
Massive threads’ context



Traditional NUMA Solutions
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CPU0 CPU1

CPU2 CPU3

DRAM DRAM

DRAMDRAM

Reactive Solutions:
First-touch page placement
Page migration/duplication

Work redistribution

GPU0 GPU1

GPU2 GPU3

HBM HBM

HBMHBM

Substantial 
Overhead

Zheng et al, “Towards High Performance Paged Memory for GPUs ”, HPCA’16
Young et al., “Combining HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems”, MICRO’18

PCIe bottleneck, No Context Switching support
Limited GPU Memory capacity
Massive threads’ context

Key Observation #1: NUMA-GPU favors a proactive solution 
based on static program analysis



GPU vs CPU Programming Model
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CPU Thread 1

CPU Thread 2

CPU Thread 3

CPU Thread 4
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+ Expressive Thread IDs 

+ Low work/spatial locality per thread

Spatial locality



GPU vs CPU Programming Model
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+ Scheduling at thread-block level
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Key Observation #2: NUMA-GPU should consider the 
hierarchy and massive threads of GPU programming model



Locality-Aware Data Management (LADM)
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Node 0

Compiler Runtime Hardware

Driver

LASP

executable

Runtime
Configuration

Locality
Table

kernel launch command

(BDim, GDim)

void main() {
mallocMan(A);

mallocMan(B);

klaunch(B,   A);

}

Compiler

Source CUDA file

Node 1
Index 

Analysis

Threadblock-Centric 
Static Index Analysis

Locality-Aware Scheduling and Placement 
(LASP)

…..

Node N



LADM [MICRO’20]

• Key Idea: LADM exploits a threadblock-centric index analysis to 
optimize runtime threadblock scheduling, data placement and 
cache policy.

• Key Results: LADM decreases inter-GPU memory traffic by 4x and 
comes within 83% of ideal monolithic performance while using 
limited and cheap interconnect technology.

27

More details can be found in the thesis & our MICRO’20 paper



Architecture Simulators

• Simulation is commonly used to estimate the effectiveness of a 
new architectural design idea.

• The simulation tools used by industry are often not released for 
open use.

28

Academic 
Simulators

Industrial Designs/ 
Simulators

Incorrect baseline assumptions
→ unrealistic issues or incorrect conclusions 

Accuracy Gap



Architecture Simulators

• Simulation is commonly used to estimate the effectiveness of a 
new architectural design idea.

• The simulation tools used by industry are often not released for 
open use.

29

Academic 
Simulators

Industrial Designs/ 
Simulators

Incorrect baseline assumptions
→ unrealistic issues or incorrect conclusions 

Accuracy Gap

Research cannot look ahead, if its baseline 
assumptions are too far behind



GPU Accelerators are Evolving Rapidly

30

2009

Fermi
• mISA sm20
• Caches/Atomics
• Dual warp scheduler

2011 2013 2015 2017 2019 2022

Kepler
• mISA sm30
• DP unit
• Dynamic Parallelism
• Dual issue

Maxwell
• mISA sm50
• Subcore model

Pascal
• mISA sm60
• Unified memory
• HBM
• FP16 support
• Streaming l1 cache

Ampere
• mISA sm80 
• Sparse tensor cores
• Asynchronous copy 

and barriers
• HBM2

Volta
• mISA sm70 
• Scoped synchronization
• Tensor cores & INT unit
• Independent threads SIMT
• Cooperative Groups
• Unified adaptive cache

Turing
• mISA sm75
• New tensor cores
• RT-cores
• UDP cores

New machine ISA and architecture designs every 1-2 years!

Hopper
??

We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.



GPU Accelerators are Evolving Rapidly
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2009

Fermi
• mISA sm20
• Caches/Atomics
• Dual warp scheduler

2011 2013 2015 2017 2019 2022

Kepler
• mISA sm30
• DP unit
• Dynamic Parallelism
• Dual issue

Maxwell
• mISA sm50
• Subcore model

Pascal
• mISA sm60
• Unified memory
• HBM
• FP16 support
• Streaming l1 cache

Ampere
• mISA sm80 
• Sparse tensor cores
• Asynchronous copy 

and barriers
• HBM2

Volta
• mISA sm70 
• Scoped synchronization
• Tensor cores & INT unit
• Independent threads SIMT
• Cooperative Groups
• Unified adaptive cache

Turing
• mISA sm75
• New tensor cores
• RT-cores
• UDP cores

New machine ISA and architecture designs every 1-2 years!

Hopper
??

We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.

How can academic open-source simulators keep up 
with industrial designs quickly and accurately? 



Accel-Sim [ISCA’20]

• Accel-Sim introduces a simulation framework to help solve the problem of 
keeping simulators up-to-date with contemporary designs.

• Key Results: Modeling and validating against five generations of NVIDIA GPUs 
ranging from Kepler to Ampere with correlation > 0.97 in all instances.

32



https://accel-sim.github.io/

• The most widely used GPU simulator by the research community since its release
• Usage beyond academia: Sandia National Labs, LLNL, some industrial companies & 

startups (e.g. Rivos startup among others)

Accel-Sim Popularity/Impact

0
2
4
6
8

10
12
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GPU simulator usage in the top architecture conferences 
(MICRO, ISCA, HPCA, ASPLOS) since June 2019

https://accel-sim.github.io/


My Ph.D. Thesis Contributions
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Efficient uService Processing
→ RPU [under review]



Request Processing Unit (RPU): Single Instruction 
Multiple Request Processing for Energy-Efficient 

Data Center Microservices

[under review at a top tier conference] 

Mahmoud Khairy, Ahmad Alawneh, Aaron Barnes, and Timothy G. Rogers
Purdue University



Recall: Datacenter Power Breakdown

36[1] Barroso, Luiz André, and Urs Hölzle. "The datacenter as a computer: An introduction to the design of warehouse-scale machines." Synthesis lectures on computer architecture. 2018

[2] Haj-Yihia, Jawad, et al. "Fine-grain power breakdown of modern out-of-order cores and its implications on skylake-based systems." ACM TACO 2016
[3] Powell, Michael D., et al. "CAMP: A technique to estimate per-structure power at run-time using a few simple parameters." HPCA 2009

30% of datacenter power is consumed in CPU’s instruction supply (frontend & OoO)

Frontend (24%)

OoO (27%)

Reg & 
Execute (24%)

Cache (25%)

Datacenter Power Breakdown
(from Google)

CPU Power Breakdown
(Intel Skylake)



1 Application, Million of Users

Log-in reqs

log in microservice

search reqs

search microservice

Private Datacenter

Public Datacenter

Key Observation#1: Single Program Multiple Data (SPMD) are abundant in the 
cloud, either in private or public datacenters 37

“Similar” Request-Level Parallelism 
1000s of independent requests are all running the same code 



Server Workloads on GPU’s SIMT

38

• Key Idea: batch requests and run on GPU’s SIMT
• Advantages: Significant Energy Efficiency (throughput/watts) vs CPU
• Drawbacks: 

• (1) Hindering Programmability (C++/PHP vs CUDA)
• (2) Limited System Calls Support (CPU-GPU communication)
• (3) High service latency

• In Rhythm [ASPLOS’14], GPU TITANX reports 6000X slower latency than CPU
• In MemcachedGPU [SoCC’15], GPU was 10X slower than CPU

SPEC-web on GPU [ASPLOS’2014] 
Memcached on GPU [SoCC’2015] 



“Slower but energy-efficient wimpy cores only win 
for general data center workloads if their single-

core speed is reasonably close to that of mid-range 
brawny cores”

39

Urs Hölzle
Google SVP

Hölzle, Urs. "Brawny cores still beat wimpy cores, most of the time." IEEE MICRO 2010



Off-Chip BW Scaling

40

Key Observation #2: There is available headroom to increase on-chip throughput 
(thread count) in the foreseeable future.



How to increase on-chip throughput of CPU?

• Direction#1 (industry standard): Add more Chiplets + Cores + SMT

• Direction#2 (this work): Move to SIMT
• More energy efficient (throughput/watts)

• Cost-effective (throughput/area)

• Better scalability

41
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“Let’s Bring the SIMT efficiency to the CPU world!”



SIMT Efficiency

.......
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Batch-Aware 
HTTP Server

RPU HW
(Latency-

Optimized
SIMT Engine)

Batch Similar Requests
(e.g. per API)

Client Requests
(HTTP/RPC calls)

Fetch &
Decode

OoO

Execute Execute…….

Dispatch 
& Issue

Lockstep 
Execution

SIMT 
stack

Branch
Pred

RPU Core

RPU Overview



CPU vs GPU vs RPU

Metric CPU GPU RPU

Core model OoO In-Order OoO

Freq High Moderate High

Programming General-Purpose CUDA/OpenCL General-Purpose

ISA x86/ARM HSAIL/PTX x86/ARM

System Calls Support Yes No Yes

Thread grain Coarse grain Fine grain Coarse grain

TLP per core Low (1-8) Massive (2K) Moderate (8-32)

Thread model SMT SIMT SIMT

Consistency Variant Weak+NMCA* Weak+NMCA*

Coherence Complex Relaxed Simple Relaxed Simple

Interconnect Mesh/Ring Crossbar Crossbar

45

The RPU takes 
advantage of the 
latency 
optimizations 
and programmability 
of the CPU 

& SIMT efficiency 
and memory model 
scalability of the 
GPU

*NMCA: non-multi copy atomicity
Ren, Xiaowei, et al. “HMG: Extending cache coherence protocols across modern hierarchical multi-gpu systems." HPCA 2020
Hechtman, Blake A., et al. "QuickRelease: A throughput-oriented approach to release consistency on GPUs." HPCA 2014



RPU Executive Summary

• Request Similarity is abundant in the data center.

• We start with OoO CPU design and then turns it to SIMT execution to 
maximize chip utilization and exploit the similarity. 

• We co-design the software stack to support batching and awareness 
of SIMT execution. 

46



• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Higher instruction execution & L1 hit latency 
• Due to larger execution units & cache resources at the backend 

Deep Dive into RPU’s Challenges

47

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call 
(10 ms)

Reconvergence?

10 ns



HW/SW Stack
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Webservice (C++, PHP,  …)

ARM/x86 compiler

HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(Process, VM, I/Os)

Multi Core CPU

CPU SW Stack

CUDA

CUDA compiler

Nvidia Triton HTTP server

CUDA runtime/libs
(cudalib, tensorRT, ..)

OS
(I/Os management)

CUDA driver 
(VM/thread management)

GPU Hardware

Webservice (C++, PHP,  …)

ARM/x86 compiler

Batch-aware HTTP server

Runtime/libs
(pthread, cstdlib, ..)

OS
(I/Os management)

RPU driver 
(VM/thread management)

RPU Hardware

GPU SW Stack RPU SW Stack

→ For RPU, we keep the SW programming interface as in the CPU
→ RPU is binary backward compatible with CPU webservices. 

→ Some VM&process management system calls are reimplemented in the RPU driver to 
be batch-aware



HW/SW Stack
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be batch-aware
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Web Server

UniqueID

URLShorten

TextSearch

Shard1 Shardn....

ImageSearch

Shard1 Shardn

Post
Text

UserTag

Recommender

Shard1 Shardn….

User

SocialGraph

McRouter

Storage

Memcached

McRouter

Storage

McRouter

Storage

Memcached

Memcached

Frontend Logic Caching & Storage

User
Storage

Post
Storage

Graph
Storage

REST/RPC calls
(via Network)

Requests 
Received

….

Key Observation: Batching is heavily employed in the data center (DL inference, Memcached, ..)
→ Instead of batching individual microservices, we propose batching in all microservices in the graph

System-Level RPU Batching



HW/SW Stack
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RPU HW
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Control Divergence Handling

Serialize divergent paths

1. / / BBA Basic Block "A" 

2. if ( x > 0)

3. { 

4. / / BBB 

5. } 

6. else

7. {

8. / / BBC

9. }

10. / / BBD

A (1111)

C (0011)B (1100)

D (1111)

PC RPC Active 
Mask

D … 1111

C D 0011

B D 1100

Divergent code example Control Flow with Active Mask HW SIMT stack after line#2 

Reconvergence 



System-Level Batch Splitting

56

1. Procedure get_user(int userid) 

2. /* first try the cache */

3. data = memcached_fetch("userrow:" + userid)

4. if not data         /* SIMT Divergence*/

5. /* not found : request database */

6. data = db_select("SELECT * FROM users 
WHERE userid = ?", userid)

7. /* then store in cache until next get */

8. memcached_add("userrow:" + userid, data) 

9. end /* SIMT Reconvergence Point*/

10. return data 

User

Storage

Memcached

Millisecond latency

Microsecond latency

Batch

WaitSplit

A (1111)

B (0001)

D (1111)

Storage access
(10 ms)

Reconvergence?

Control Flow with Active Mask



• Control Divergence
• Control divergence wit high latency branch

• Memory Divergence
• Cache Contention & Bank Conflicts

• Higher instruction execution & L1 hit latency 
• More execution units & cache resources at the backend 

Deep Dive into RPU’s Challenges

57

L1 cacheThrashing

Many threads

A (1111)

C (0011)B (1100)

D (1111)

System call 
(10 ms)

Reconvergence?

10 ns



Memory Coalescing Optimizations

58Stack segment coalescing with data interleaving

HW memory coalescing unit (MCU) for 
Heap & Data segments

T1

Load A

T2

Load A

T3

Load A

T4

Load A

Independent threads execution (CPU)

T1 T2

Load A

T3 T4

SIMT execution with MCU

Load A only once 
and broadcast

MCU

Virtual space

T1 Stack 
Int x
Int y

Physical space

Hardware 
Support 

TLB mapping

Tn Stack 
Int x
Int y

Data Seg

Heap Seg

Batch Stack
T1(x)
T2(x)

...
Tn(x)
T1(y)
T2(y)

...
Tn(y)

Data Seg

Heap Seg

T2 Stack 
Int x
Int y

Code SegCode Seg

….
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Memcached-backend Memcached-memc post text URLshort
uniqueID userTag user

Batch Size Tuning to Alleviate Cache Contention

For all microservices, we run at full batch size (32), 
except Text-Leaf & ImageSearch-Leaf (batch size = 8)

what about bank conflicts?

L1/Thread 64KB 8KB 16KB 32KB 64KB

#Threads



SIMT-Agnostic Memory Allocator

62

1. Microservice () 

2. //Create a private temporary array in the

3. // heap segment

4. int* temp = new int[n];

5. ………..

6. for(int i=0; i<n; i++)

7. temp[i] = i;      //Write to the temp

8. ………..

9. for(int i=0; i<n; i++)

10. sum += temp[i];  //Read from the temp

11. ………..

Severe Bank Conflicts

B0 B1 B2 B3

T0
0xf6746000

temp array address

C++ SIMT-Agnostic Memory Allocator

T3
0x78f47000

T1
0x80764040

T2
0x78f47040

L1 cache 
banks

Assume data are interleaved every 32B



SIMT-Aware Memory Allocator

63

1. Microservice () 

2. //Create a private temporary array in the

3. // heap segment

4. int* temp = new int[n];

5. ………..

6. for(int i=0; i<n; i++)

7. temp[i] = i;      //Write to the temp

8. ………..

9. for(int i=0; i<n; i++)

10. sum += temp[i];  //Read from the temp

11. ………..

B0 B1 B2 B3

C++ SIMT-Aware Memory Allocator

L1 cache 
banks

T0
0xf6746000

T1
0x78f47020

T2
0x80764040

T3
0x78f47060

→ ensures start_address%(n*tid) = 0

Assume data are interleaved every 32B

Conflict-free



Evaluation

• Analytical Model

• Simulation-based evaluation
• Chip-level evaluation

• System-level evaluation 
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Energy Efficiency of CPU vs RPU (Analytical Model)

65

𝑪𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚

𝑹𝑷𝑼 𝑬𝒏𝒆𝒓𝒈𝒚
=

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 +𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝟏 − 𝒓 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 +
𝟏

𝒏 ∗ 𝒆𝒇𝒇
𝑭𝒓𝒐𝒏𝒕_𝑶𝒐𝑶 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝒓 ∗ 𝑴𝒆𝒎𝒐𝒓𝒚 𝒔𝒚𝒔𝒕𝒆𝒎 𝑬𝒏𝒆𝒓𝒈𝒚 + 𝑺𝒕𝒂𝒕𝒊𝒄 𝑬𝒏𝒆𝒓𝒈𝒚

SIMT Efficiency=92%

batch size (n) = 8-32 data locality ratio =75%

Amortized
factors = 50-80%

→ an anticipated 2-5x energy efficiency gain can be achieved with RPU vs CPU



Experimental Setup

66

Workloads: Social Network Microservices
Microsuite [IISWC 2018], DeathStarBench [ASPLOS 2020] and In-house benchmarks
Libraries: c++ stdlib, Intel MKL, OpenSSL, FLANN, Pthread, zlib, protobuf, gRPC and MLPack, …

SIMTec
(x86 PIN-based tool)

[ISPASS 2022]

Accel-Sim
[ISCA 2020]

uqsim
[ISPASS 2019]

SIMT Efficiency

Chip-level cycle 
accurate simulator

System-level 
uservice-interaction simulator

CPU vs RPU
throughput/Watt & 

latency

traces 
(w/ & w/o batching)

Dynamic
Instrumentation

End-to-end tail latency &
Max throughput

Throughput
& latency

Khairy, Mahmoud, et al. "Accel-Sim: An extensible simulation framework for validated GPU modeling." ISCA 2020

Zhang, Yanqi, Yu Gan, and Christina Delimitrou. "uqSim: Scalable and Validated Simulation of Cloud Microservices." ISPASS 2019

Alawneh, Ahmad , et al. "A SIMT Analyzer for Multi-Threaded CPU Applications." ISPASS 2022

Sriraman, Akshitha, and Thomas F. Wenisch. "μ suite: a benchmark suite for microservices." IISWC 2018

Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems.“ ASPLOS 2019



Simulation Configuration

67

• Baseline: Single threaded CPU 
and SMT8 CPU 

• RPU: SIMT-32 (1 batch)

• We ensure both CPU and RPU 
have the same pipeline 
configuration, frequency, and 
memory resources/thread for 
SMT8 and our RPU

• CPU & RPU are TDP equivalent 
at the same technology node 
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4.3X

1.3X

Lower Is better

Higher Is better

RPU system achieves 4.3x higher throughput/Watt while 
maintaining acceptable service latency, without 

changing the programming SW interface



https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
https://www.sigarch.org/an-academics-attempt-to-clear-the-fog-of-the-machine-learning-accelerator-war/

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
https://www.sigarch.org/an-academics-attempt-to-clear-the-fog-of-the-machine-learning-accelerator-war/


ML Hardware Startup Explosion

• 1.2B investment in 2017

• AI chip market is anticipated to be 90B in 2025 (train + inference)

71



How to Fairly Evaluate Existing Solutions?

• MLPerf only shows training time  (i.e. performance), which is tricky!

• Proposed Solution:
• Apples-to-apples comparison

• Focusing on efficiency metrics
• Performance per Dollar per Watt per Unit

• Trying to reduce the batch size effect

• Design philosophy (Data vs Model parallelism)
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https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38

Read More Details in the Article

https://khairy2011.medium.com/tpu-vs-gpu-vs-cerebras-vs-graphcore-a-fair-comparison-between-ml-hardware-3f5a19d89e38
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Conclusions
• SIMT-based accelerators, like GPUs and RPUs, are promising solutions to achieve 

significant energy efficiency in the data centers while still preserving 
programmability.

• Challenges:
• (1) How to overcome the non-uniform memory access overhead for next-

generation multi-chiplet GPUs in the era of ML-driven workloads?
• (2) How to improve the energy efficiency of data center’s CPUs in the light of 

microservices evolution?

• Moving forward, studying the feasibility of RPU architecture and prototyping is 
an important area of research. 
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TPU VCU

Hardware

Software

Deep 
Learning Microservices

Accelerators

RPU

Thank You!
Q&A?


